Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications

被引:142
作者
Van den Berge, Koen [1 ,2 ]
Perraudeau, Fanny [3 ]
Soneson, Charlotte [4 ,5 ]
Love, Michael I. [6 ]
Risso, Davide [7 ]
Vert, Jean-Philippe [8 ,9 ,10 ,11 ]
Robinson, Mark D. [4 ,5 ]
Dudoit, Sandrine [3 ,12 ]
Clement, Lieven [1 ,2 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281,S9, B-9000 Ghent, Belgium
[2] Univ Ghent, Bioinformat Inst Ghent, B-9000 Ghent, Belgium
[3] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
[4] Univ Zurich, Inst Mol Life Sci, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[5] Univ Zurich, SIB Swiss Inst Bioinformat, CH-8057 Zurich, Switzerland
[6] Univ North Carolina Chapel Hill, Dept Biostat & Genet, Chapel Hill, NC USA
[7] Weill Cornell Med, Div Biostat & Epidemiol, Dept Healthcare Policy & Res, New York, NY USA
[8] PSL Res Univ, MINES ParisTech, CBIO Ctr Computat Biol, Paris, France
[9] Inst Curie, Paris, France
[10] INSERM U900, Paris, France
[11] Ecole Normale Super, Dept Math & Applicat, Paris, France
[12] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
基金
美国国家卫生研究院; 欧洲研究理事会;
关键词
Single-cell RNA sequencing; Differential expression; Zero-inflated negative binomial; Weights; DIFFERENTIAL EXPRESSION ANALYSIS; GENE-EXPRESSION; SEQUENCING DATA; HETEROGENEITY; PACKAGE;
D O I
10.1186/s13059-018-1406-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Dropout events in single-cell RNA sequencing (scRNA-seq) cause many transcripts to go undetected and induce an excess of zero read counts, leading to power issues in differential expression (DE) analysis. This has triggered the development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent evaluations, however, have shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We introduce a weighting strategy, based on a zero-inflated negative binomial model, that identifies excess zero counts and generates gene-and cell-specific weights to unlock bulk RNA-seq DE pipelines for zero-inflated data, boosting performance for scRNA-seq.
引用
收藏
页数:17
相关论文
共 66 条
[1]  
[Anonymous], 2013, Econometric society Monograph
[2]  
Aran D, xCell: digitally portraying the tissue cellular heterogeneity landscape
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Evaluating Gene Expression in C57BL/6J and DBA/2J Mouse Striatum Using RNA-Seq and Microarrays [J].
Bottomly, Daniel ;
Walter, Nicole A. R. ;
Hunter, Jessica Ezzell ;
Darakjian, Priscila ;
Kawane, Sunita ;
Buck, Kari J. ;
Searles, Robert P. ;
Mooney, Michael ;
McWeeney, Shannon K. ;
Hitzemann, Robert .
PLOS ONE, 2011, 6 (03)
[5]   Independent filtering increases detection power for high-throughput experiments [J].
Bourgon, Richard ;
Gentleman, Robert ;
Huber, Wolfgang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) :9546-9551
[6]   Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells [J].
Buettner, Florian ;
Natarajan, Kedar N. ;
Casale, F. Paolo ;
Proserpio, Valentina ;
Scialdone, Antonio ;
Theis, Fabian J. ;
Teichmann, Sarah A. ;
Marioni, John C. ;
Stegie, Oliver .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :155-160
[7]  
Butler A, INTEGRATED ANALYSIS
[8]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196
[9]   MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data [J].
Finak, Greg ;
McDavid, Andrew ;
Yajima, Masanao ;
Deng, Jingyuan ;
Gersuk, Vivian ;
Shalek, Alex K. ;
Slichter, Chloe K. ;
Miller, Hannah W. ;
McElrath, M. Juliana ;
Prlic, Martin ;
Linsley, Peter S. ;
Gottardo, Raphael .
GENOME BIOLOGY, 2015, 16
[10]   Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA [J].
Fujita, Keisuke ;
Iwaki, Mitsuhiro ;
Yanagida, Toshio .
NATURE COMMUNICATIONS, 2016, 7