An Improved Centroid-based Approach for Multi-label Classification of Web Pages by Genre

被引:0
|
作者
Jebari, Chaker [1 ]
机构
[1] Coll Appl Sci, Ibri, Oman
来源
2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011) | 2011年
关键词
multi-label classification; incremental classification; genre centroid; centroid adjustement; noise web page;
D O I
10.1109/ICTAI.2011.142
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an improved multi-label approach to classify web pages by genre. Our approach provides a multi-label classification scheme in which a web page can be assigned to more than one genre. To deal with the rapid evolution of web genres, our approach implements an incremental centroid-based classification scheme. Conducted experiments on a multi-labeled corpus of web pages show that our approach provides good results.
引用
收藏
页码:889 / 890
页数:2
相关论文
共 50 条
  • [21] Multi-label classification with label clusters
    Gatto, Elaine Cecilia
    Ferrandin, Mauri
    Cerri, Ricardo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (02) : 1741 - 1785
  • [22] Biclustering-based multi-label classification
    Schmitke, Luiz Rafael
    Paraiso, Emerson Cabrera
    Nievola, Julio Cesar
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4861 - 4898
  • [23] Multi-label Anomaly Classification Based on Electrocardiogram
    Li, Chenyang
    Sun, Le
    HEALTH INFORMATION SCIENCE, HIS 2021, 2021, 13079 : 171 - 178
  • [24] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [25] A MULTI-LABEL CLASSIFICATION APPROACH FOR FACIAL EXPRESSION RECOGNITION
    Zhao, Kaili
    Zhang, Honggang
    Dong, Mingzhi
    Guo, Jun
    Qi, Yonggang
    Song, Yi-Zhe
    2013 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP 2013), 2013,
  • [26] Multi-label Approach for Human-Face Classification
    Mohammed, Ahmed Abdulateef
    Sajjanhar, Atul
    Nasierding, Gulisong
    2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 648 - 653
  • [27] Label Relevance Based Multi-Label Scratch Classification Algorithm
    Peng C.
    Sun Y.
    Qi P.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (06): : 134 - 141
  • [28] Gradient-Based Label Binning in Multi-label Classification
    Rapp, Michael
    Mencia, Eneldo Loza
    Furnkranz, Johannes
    Hullermeier, Eyke
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 462 - 477
  • [29] A Classification Approach with a Reject Option for Multi-label Problems
    Pillai, Ignazio
    Fumera, Giorgio
    Roli, Fabio
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT I, 2011, 6978 : 98 - 107
  • [30] An Improved Convolutional Neural Network Algorithm for Multi-label Classification
    Wang, Xinsheng
    Sun, Lijun
    Wei, Zhihua
    2018 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2018, : 113 - 117