An Improved Centroid-based Approach for Multi-label Classification of Web Pages by Genre

被引:0
作者
Jebari, Chaker [1 ]
机构
[1] Coll Appl Sci, Ibri, Oman
来源
2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011) | 2011年
关键词
multi-label classification; incremental classification; genre centroid; centroid adjustement; noise web page;
D O I
10.1109/ICTAI.2011.142
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an improved multi-label approach to classify web pages by genre. Our approach provides a multi-label classification scheme in which a web page can be assigned to more than one genre. To deal with the rapid evolution of web genres, our approach implements an incremental centroid-based classification scheme. Conducted experiments on a multi-labeled corpus of web pages show that our approach provides good results.
引用
收藏
页码:889 / 890
页数:2
相关论文
共 6 条
[1]  
[Anonymous], THESIS U BRIGHTON UK
[2]  
Cardoso-Cachopo A., 2006, EMPIRICAL EVALUATION
[3]  
Mason J.E., 2009, P 42 HAW INT C SYST
[5]  
Tsoumakas G., 2009, ECML PKDD C SLOV
[6]  
Vidulin V., 2009, P JLCL C, V24, P97