Z2Z4-Additive Cyclic Codes, Generator Polynomials, and Dual Codes

被引:46
作者
Borges, Joaquim [1 ]
Fernandez-Cordoba, Cristina [1 ]
Ten-Valls, Roger [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Informat & Commun Engn, E-08193 Barcelona, Spain
关键词
Binary cyclic codes; cyclic codes over Z(4); duality; Z(2)Z(4)-additive cyclic codes; Z(4);
D O I
10.1109/TIT.2016.2611528
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Z(2)Z(4)-additive code C subset of Z(2)(alpha) x Z(4)(beta) is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z(2) and the set of Z(4) coordinates, such that any cyclic shift of the coordinates of both subsets leaves the code invariant. These codes can be identified as submodules of the Z(4)[x]-module Z(2)[x]/(x(alpha) - 1) x Z(4)[x]/(x(beta) - 1). The parameters of a Z(2)Z(4)-additive cyclic code are stated in terms of the degrees of the generator polynomials of the code. The generator polynomials of the dual code of a Z(2)Z(4)-additive cyclic code are determined in terms of the generator polynomials of the code C.
引用
收藏
页码:6348 / 6354
页数:7
相关论文
共 9 条
  • [1] Z2Z4-Additive Cyclic Codes
    Abualrub, Taher
    Siap, Irfan
    Aydin, Nuh
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1508 - 1514
  • [2] Bilal M, 2011, DESIGN CODE CRYPTOGR, V61, P31, DOI 10.1007/s10623-010-9437-1
  • [3] Borges J, 2010, DESIGN CODE CRYPTOGR, V54, P167, DOI 10.1007/s10623-009-9316-9
  • [4] CHARACTERIZATION AND CONSTRUCTIONS OF SELF-DUAL CODES OVER Z2 x Z4
    Borges, Joaquim
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (03) : 287 - 303
  • [5] DELSARTE P, 1973, PHILIPS RES REP, P1
  • [6] MacWilliams F.J., 1975, THEORY ERROR CORRECT
  • [7] Cyclic codes and quadratic residue codes over Z(4)
    Pless, VS
    Qian, ZQ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (05) : 1594 - 1600
  • [8] MAXIMUM DISTANCE Q-NARY CODES
    SINGLETON, RC
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1964, 10 (02) : 116 - &
  • [9] Wan Z., 1997, Quaternary codes