Regularized impulse response estimation for systems with colored output noise

被引:1
作者
Boeira, Emerson C. [1 ]
Eckhard, Diego [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Programa Posgrad Engn Elect, Av Osvaldo Aranha 103, Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, Av Bento Goncalves 9500, Porto Alegre, RS, Brazil
来源
2021 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE (ANZCC) | 2021年
关键词
D O I
10.1109/ANZCC53563.2021.9628304
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the use of the regularization feature on impulse response estimation for systems with colored output noise. Firstly, it is shown that the optimal regularization matrix for this scenario is quite different than the optimal for the white noise case and that there is a direct relationship between the Regularized Weighted Least-Squares with a Bayesian perspective of the identification problem for such case. Also, a new Empirical Bayes method, based on the Bayesian perspective, is introduced to estimate the regularization and noise covariance matrices from data. Finally, a numerical example demonstrates that this new methodology outperforms the traditional Regularized Least-Squares, producing better statistical properties and better results for a model fit measure.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 9 条
[1]  
Anderson B. D., 2005, Optimal filtering
[2]  
CARLIN BP, 2000, C&H TEXT STAT SCI, P1
[3]   Implementation of algorithms for tuning parameters in regularized least squares problems in system identification [J].
Chen, Tianshi ;
Ljung, Lennart .
AUTOMATICA, 2013, 49 (07) :2213-2220
[4]   On the estimation of transfer functions, regularizations and Gaussian processes-Revisited [J].
Chen, Tianshi ;
Ohlsson, Henrik ;
Ljung, Lennart .
AUTOMATICA, 2012, 48 (08) :1525-1535
[5]  
Ljung L., 1999, SYSTEM IDENTIFICATIO, V2nd
[6]   A shift in paradigm for system identification [J].
Ljung, Lennart ;
Chen, Tianshi ;
Mu, Biqiang .
INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (02) :173-180
[7]   Kernel methods in system identification, machine learning and function estimation: A survey [J].
Pillonetto, Gianluigi ;
Dinuzzo, Francesco ;
Chen, Tianshi ;
De Nicolao, Giuseppe ;
Ljung, Lennart .
AUTOMATICA, 2014, 50 (03) :657-682
[8]   Prediction error identification of linear systems: A nonparametric Gaussian regression approach [J].
Pillonetto, Gianluigi ;
Chiuso, Alessandro ;
De Nicolao, Giuseppe .
AUTOMATICA, 2011, 47 (02) :291-305
[9]   A new kernel-based approach for linear system identification [J].
Pillonetto, Gianluigi ;
De Nicolao, Giuseppe .
AUTOMATICA, 2010, 46 (01) :81-93