C0 PENALTY METHODS FOR THE FULLY NONLINEAR MONGE-AMPERE EQUATION

被引:78
作者
Brenner, Susanne C. [1 ,2 ]
Gudi, Thirupathi [3 ]
Neilan, Michael [1 ,2 ]
Sung, Li-Yeng [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
基金
美国国家科学基金会;
关键词
Monge-Ampere equation; fully nonlinear PDEs; finite element method; convergence analysis; FINITE-ELEMENT METHODS; ELLIPTIC-EQUATIONS; NUMERICAL-SOLUTION;
D O I
10.1090/S0025-5718-2011-02487-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop and analyze C-0 penalty methods for the fully nonlinear Monge-Ampere equation det(D(2)u) = f in two dimensions. The key idea in designing our methods is to build discretizations such that the resulting discrete linearizations are symmetric, stable, and consistent with the continuous linearization. We are then able to show the well-posedness of the penalty method as well as quasi-optimal error estimates using the Banach fixed-point theorem as our main tool. Numerical experiments are presented which support the theoretical results.
引用
收藏
页码:1979 / 1995
页数:17
相关论文
共 31 条
  • [1] [Anonymous], 1989, METHODS MATH PHYS
  • [2] [Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
  • [3] Baginski F. E., 1996, NUMER METH PART D E, V12, P525
  • [4] Barles G., 1991, Asymptotic Analysis, V4, P271
  • [5] TWO NUMERICAL METHODS FOR THE ELLIPTIC MONGE-AMPERE EQUATION
    Benamou, Jean-David
    Froese, Brittany D.
    Oberman, Adam M.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04): : 737 - 758
  • [6] OPTIMAL FINITE-ELEMENT INTERPOLATION ON CURVED DOMAINS
    BERNARDI, C
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) : 1212 - 1240
  • [7] On finite element methods for fully nonlinear elliptic equations of second order
    Boehmer, Klaus
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1212 - 1249
  • [8] BRAMBLE JH, 1986, MATH COMPUT, V47, P103, DOI 10.1090/S0025-5718-1986-0842125-3
  • [9] BRENNER SC, FINITE ELEMENT UNPUB
  • [10] Budd CJ, 2009, ACTA NUMER, V18, P111, DOI 10.1017/S0962492906400015