Time-delayed chameleon: Analysis, synchronization and FPGA implementation

被引:21
作者
Rajagopal, Karthikeyan [1 ]
Jafari, Sajad [2 ]
Laarem, Guessas [3 ]
机构
[1] PNG Univ Technol, Dept Elect & Commun Engn, Ctr Nonlinear Dynam, Lae, Papua N Guinea
[2] Amirkabir Univ Technol, Biomed Engn Dept, Tehran, Iran
[3] Ferhat Abbes Univ, Technol Fac, Setif, Algeria
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 89卷 / 06期
关键词
Time-delay systems; bifurcation; lag synchronization; field programmable gate arrays; FUNCTION PROJECTIVE SYNCHRONIZATION; DIFFERENT CHAOTIC SYSTEMS; HIDDEN ATTRACTORS; NO-EQUILIBRIUM; ADAPTIVE SYNCHRONIZATION; HYPERCHAOTIC SYSTEM; UNKNOWN-PARAMETERS; NOISE; MULTISTABILITY;
D O I
10.1007/s12043-017-1487-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.
引用
收藏
页数:17
相关论文
共 78 条
[1]   Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities [J].
Aghababa, Mohammad Pourmahmood ;
Heydari, Aiuob .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (04) :1639-1652
[2]  
[Anonymous], PRAMANA J PHYS
[3]  
[Anonymous], ARXIV14102016
[4]   Rare and hidden attractors in Van der Pol-Duffing oscillators [J].
Brezetskyi, S. ;
Dudkowski, D. ;
Kapitaniak, T. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08) :1459-1467
[5]   Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme [J].
Chen, Diyi ;
Zhang, Runfan ;
Ma, Xiaoyi ;
Liu, Si .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :35-55
[6]   Robust chaos synchronization of noise-perturbed chaotic systems with multiple time-delays [J].
Cheng, Chun-Kai ;
Kuo, Hang-Hong ;
Hou, Yi-You ;
Hwang, Chi-Chuan ;
Liao, Teh-Lu .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (13) :3093-3102
[7]   Estimation of the largest Lyapunov exponent-like (LLEL) stability measure parameter from the perturbation vector and its derivative dot product (part 2) experiment simulation [J].
Dabrowski, Artur .
NONLINEAR DYNAMICS, 2014, 78 (03) :1601-1608
[8]   Stability analysis of differential equations with time-dependent delay [J].
Deng, WH ;
Wu, YJ ;
Li, CP .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (02) :465-472
[9]   Topological horseshoe analysis on a four-wing chaotic attractor and its FPGA implement [J].
Dong, Enzeng ;
Liang, Zhihan ;
Du, Shengzhi ;
Chen, Zengqiang .
NONLINEAR DYNAMICS, 2016, 83 (1-2) :623-630
[10]   Function projective synchronization of different chaotic systems with uncertain parameters [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
PHYSICS LETTERS A, 2008, 372 (33) :5402-5410