Developing the Active Trap Model for CCD charge transfer optimisation in large-scale space missions

被引:1
作者
Buggey, T. W. [1 ]
Soman, M. R. [1 ]
Hall, D. J. [1 ]
Parsons, S. [1 ]
Bush, N. [1 ,2 ]
Hetherington, O. [1 ]
Randall, G. [1 ]
Leese, M. [1 ]
Holland, A. D. [1 ]
机构
[1] Open Univ, Ctr Elect Imaging CEI, STEM, Milton Keynes MK18 3FZ, Bucks, England
[2] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
来源
X-RAY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY IX | 2020年 / 11454卷
关键词
Active Trap Model; CCDs; radiation-induced defects; trap pumping; trap landscape; space instrumentation; CAMERA;
D O I
10.1117/12.2561399
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Charge coupled devices (CCDs) have been the detector of choice for large-scale space mission for many years. Although dominant in this field, the charge transfer performance of the technology degrades over time due to the harsh space-radiation environment. Charge transfer performance can be optimized however, but it is often time consuming and expensive due to the many operating modes of the CCDs. A new technique is presented and developed here, which uses new measurements of the trap landscape present in a CCD, to predict changes in charge transfer inefficiency as a function of different variables. By using this technique, it is possible to focus experimental lab testing on key device parameters, potentially saving many months of laboratory effort. Due to the generality of the method, it can be used to optimize the charge transfer performance of any CCD, and as such has many uses across a wide range of fields. Future CCDs variants that will be used in potential space missions (EMCCD and p-channel CCDs) can use this technique to feedback key device performance to the wider mission consortium before devices are available for experimental testing.
引用
收藏
页数:15
相关论文
共 12 条
  • [1] Bush N., 2018, OUPCHANFP1ISS1
  • [2] Bush N., OPTIMISATION C UNPUB
  • [3] Bush N., 2018, P SPIE, V10709, DOI [10.1117/12.2313574, DOI 10.1117/12.2313574]
  • [4] Bush N. L., 2018, THESIS OPEN U
  • [5] Determination of In Situ Trap Properties in CCDs Using a "Single-Trap Pumping" Technique
    Hall, David J.
    Murray, Neil J.
    Holland, Andrew D.
    Gow, Jason
    Clarke, Andrew
    Burt, David
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (04) : 1826 - 1833
  • [6] RADIATION-DAMAGE IN SCIENTIFIC CHARGE-COUPLED-DEVICES
    JANESICK, J
    ELLIOTT, T
    POOL, F
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1989, 36 (01) : 572 - 578
  • [7] GAIA: Composition, formation and evolution of the Galaxy
    Perryman, MAC
    de Boer, KS
    Gilmore, G
    Hog, E
    Lattanzi, MG
    Lindegren, L
    Luri, X
    Mignard, F
    Pace, O
    de Zeeuw, PT
    [J]. ASTRONOMY & ASTROPHYSICS, 2001, 369 (01) : 339 - 363
  • [8] Pichler P., 2004, COMP MICROE, DOI 10.1007/978-3-7091-0597-9
  • [9] The European Photon Imaging Camera on XMM-Newton:: The pn-CCD camera
    Strüder, L
    Briel, U
    Dennerl, K
    Hartmann, R
    Kendziorra, E
    Meidinger, N
    Pfeffermann, E
    Reppin, C
    Aschenbach, B
    Bornemann, W
    Bräuninger, H
    Burkert, W
    Elender, M
    Freyberg, M
    Haberl, F
    Hartner, H
    Heuschmann, F
    Hippmann, H
    Kastelic, E
    Kemmer, S
    Kettenring, G
    Kink, W
    Krause, N
    Müller, S
    Oppitz, A
    Pietsch, W
    Popp, M
    Predehl, P
    Read, A
    Stephan, KH
    Stötter, D
    Trümper, J
    Holl, P
    Kemmer, J
    Soltau, H
    Stötter, R
    Weber, U
    Weichert, U
    von Zanthier, C
    Carathanassis, D
    Lutz, G
    Richter, RH
    Solc, P
    Böttcher, H
    Kuster, M
    Staubert, R
    Abbey, A
    Holland, A
    Turner, M
    Balasini, M
    [J]. ASTRONOMY & ASTROPHYSICS, 2001, 365 (01): : L18 - L26
  • [10] An overview of the performance and scientific results from the Chandra X-ray Observatory
    Weisskopf, MC
    Brinkman, B
    Canizares, C
    Garmire, G
    Murray, S
    Van Speybroeck, LP
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2002, 114 (791) : 1 - 24