Polymer quantum mechanics as a deformation quantization

被引:11
作者
Berra-Montie, Jasel [1 ,2 ]
Molgadol, Alberto [1 ,2 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ciencias, Av Salvador Nava S-N Zona Univ, San Luis Potosi 78290, Slp, Mexico
[2] Dual CP Inst High Energy Phys, Colima 28045, Col, Mexico
关键词
polymer quantum mechanics; loop quantum cosmology; deformation quantization; star-product; generalized uncertainty principle; BLACK-HOLE ENTROPY; HILBERT-SPACE;
D O I
10.1088/1361-6382/aaf4e3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the polymer representation of quantum mechanics within the deformation quantization formalism. In particular, we construct the Wigner function and the star-product for the polymer representation as a distributional limit of the Schrodinger representation for the Weyl algebra in a Gaussian weighted measure, and we observe that the quasi-probability distribution limit of this Schrodinger representation agrees with the Wigner function for loop quanttun cosmology. Further, the introduced polymer star-product fulfills Bohr's correspondence principle even though not all the operators are well defined in the polymer representation. Finally, within our framework, we also derive a generalized uncertainty principle which resembles the one appearing in different scenarios, including theories with a minimal length.
引用
收藏
页数:16
相关论文
共 35 条
[1]  
Agullo I, 2017, LOOP QUANTUM GRAVITY, V4
[2]  
AMELINOCAMELIA G, 2005, LECT NOTES PHYS, V669
[3]  
[Anonymous], 1980, FUNCTIONAL ANAL
[4]   Quantum gravity, shadow states and quantum mechanics [J].
Ashtekar, A ;
Fairhurst, S ;
Willis, JL .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (06) :1031-1061
[5]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[6]   Robustness of key features of loop quantum cosmology [J].
Ashtekar, Abhay ;
Corichi, Alejandro ;
Singh, Parampreet .
PHYSICAL REVIEW D, 2008, 77 (02)
[7]   Loop quantum cosmology: a status report [J].
Ashtekar, Abhay ;
Singh, Parampreet .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (21)
[8]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[9]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[10]   Phase space quantum mechanics [J].
Blaszak, Maciej ;
Domanski, Ziemowit .
ANNALS OF PHYSICS, 2012, 327 (02) :167-211