Strong solutions to compressible-incompressible two-phase flows with phase transitions

被引:1
作者
Watanabe, Keiichi [1 ]
机构
[1] Waseda Univ, Grad Sch Fundamental Sci & Engn, Dept Pure & Appl Math, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, Japan
关键词
Free boundary problem; Phase transition; Two-phase problem; Maximal regularity; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; R-BOUNDEDNESS; SOLUTION OPERATOR; MODEL; REGULARITY;
D O I
10.1016/j.nonrwa.2020.103101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a free boundary problem of compressible-incompressible two-phase flows with phase transitions in general domains of N-dimensional Euclidean space (e.g. whole space; half-spaces; bounded domains; exterior domains). The compressible fluid and the incompressible fluid are separated by either compact or non-compact sharp moving interface, and the surface tension is taken into account. In our model, the compressible fluid and incompressible fluid are occupied by the Navier-Stokes-Korteweg equations and the Navier-Stokes equations, respectively. This paper shows that for given T > 0 the problem admits a unique strong solution on (0, T) in the maximal L-p - L-q regularity class provided the initial data are small in their natural norms. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:62
相关论文
共 29 条
[1]  
Amann H, 1995, MONOGRAPHS MATH, V89
[2]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[3]  
[Anonymous], MATH ANAL NAVIER STO
[4]  
[Anonymous], 1973, Publ. Res. Inst. Math. Sci.
[5]  
[Anonymous], ARXIV190106461
[6]   On the van der Waals-Cahn-Hilliard phase-field model and its equilibria conditions in the sharp interface limit [J].
Dreyer, Wolfgang ;
Kraus, Christiane .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :1161-1186
[7]  
Dunn J. E., 1986, New Perspectives in Thermodynamics, P187
[8]  
DUNN JE, 1985, ARCH RATION MECH AN, V88, P95
[9]   On the R-Sectoriality and the Initial Boundary Value Problem for the Viscous Compressible Fluid Flow [J].
Enomoto, Yuko ;
Shibata, Yoshihiro .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (03) :441-505
[10]   Phase-Field and Korteweg-Type Models for the Time-Dependent Flow of Compressible Two-Phase Fluids [J].
Freistuehler, Heinrich ;
Kotschote, Matthias .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (01) :1-20