SHARP LARGE DEVIATIONS FOR THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS

被引:27
作者
Bercu, B. [1 ]
Coutin, L. [2 ]
Savy, N. [1 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, UMR C5251, F-33405 Talence, France
[2] Univ Toulouse 3, Inst Math Toulouse, UMR C5583, F-31062 Toulouse 09, France
关键词
large deviations; Ornstein-Uhlenbeck process; fractional Brownian motion; QUADRATIC-FORMS;
D O I
10.1137/S0040585X97985108
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the sharp large deviation properties of the energy and the maximum likelihood estimator for the Ornstein-Uhlenbeck process driven by a fractional Brownian motion with Hurst index greater than one half.
引用
收藏
页码:575 / 610
页数:36
相关论文
共 17 条
[1]   ON DEVIATIONS OF THE SAMPLE-MEAN [J].
BAHADUR, RR ;
RAO, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04) :1015-1027
[2]  
Bercu B, 2001, THEOR PROBAB APPL+, V46, P1
[3]   Large deviations for quadratic forms of stationary Gaussian processes [J].
Bercu, B ;
Gamboa, F ;
Rouault, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 71 (01) :75-90
[4]   Large deviations in testing fractional Ornstein-Uhlenbeck models [J].
Bishwal, Jaya P. N. .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (08) :953-962
[5]  
Brouste A., 2010, STAT INFERENCE STOCH, V13, P1, DOI [10.1007/s11203-009-9035-x, DOI 10.1007/S11203-009-9035-X, DOI 10.1007/s11203-009-9035-x]
[6]   Large deviations for quadratic functionals of Gaussian processes [J].
Bryc, W ;
Dembo, A .
JOURNAL OF THEORETICAL PROBABILITY, 1997, 10 (02) :307-332
[7]  
Dembo A., 1998, LARGE DEVIATIONS TEC
[8]   Large deviations in estimation of an Ornstein-Uhlenbeck model [J].
Florens-Landais, D ;
Pham, H .
JOURNAL OF APPLIED PROBABILITY, 1999, 36 (01) :60-77
[9]   A functional large deviations principle for quadratic forms of Gaussian stationary processes [J].
Gamboa, F ;
Rouault, A ;
Zani, M .
STATISTICS & PROBABILITY LETTERS, 1999, 43 (03) :299-308
[10]   Parameter estimation for fractional Ornstein-Uhlenbeck processes [J].
Hu, Yaozhong ;
Nualart, David .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) :1030-1038