Real-Time Human Action Recognition Using Deep Learning Architecture

被引:1
|
作者
Kahlouche, Souhila [1 ]
Belhocine, Mahmoud [2 ]
Menouar, Abdallah [3 ]
机构
[1] Ecole Natl Super Informat ESI, Algiers, Algeria
[2] Ctr Dev Technol Avancees CDTA, Algiers, Algeria
[3] Univ Sci & Technol Houari Boumediene, Algiers, Algeria
关键词
Human activities recognition; deep learning; RGBD camera; model uncertainty;
D O I
10.1142/S1469026821500267
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, efficient human activity recognition (HAR) algorithm based on deep learning architecture is proposed to classify activities into seven different classes. In order to learn spatial and temporal features from only 3D skeleton data captured from a "Microsoft Kinect" camera, the proposed algorithm combines both convolution neural network (CNN) and long short-term memory (LSTM) architectures. This combination allows taking advantage of LSTM in modeling temporal data and of CNN in modeling spatial data. The captured skeleton sequences are used to create a specific dataset of interactive activities; these data are then transformed according to a view invariant and a symmetry criterion. To demonstrate the effectiveness of the developed algorithm, it has been tested on several public datasets and it has achieved and sometimes has overcome state-of-the-art performance. In order to verify the uncertainty of the proposed algorithm, some tools are provided and discussed to ensure its efficiency for continuous human action recognition in real time.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Real-Time Violent Action Recognition Using Key Frames Extraction and Deep Learning
    Ahmed, Muzamil
    Ramzan, Muhammad
    Khan, Hikmat Ullah
    Iqbal, Saqib
    Khan, Muhammad Attique
    Choi, Jung-In
    Nam, Yunyoung
    Kadry, Seifedine
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 2217 - 2230
  • [2] Real-Time Emotion Recognition Using Deep Learning Algorithms
    El Mettiti, Abderrahmane
    Oumsis, Mohammed
    Chehri, Abdellah
    Saadane, Rachid
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [3] Deep Learning Models for Real-time Human Activity Recognition with Smartphones
    Shaohua Wan
    Lianyong Qi
    Xiaolong Xu
    Chao Tong
    Zonghua Gu
    Mobile Networks and Applications, 2020, 25 : 743 - 755
  • [4] Deep Learning Models for Real-time Human Activity Recognition with Smartphones
    Wan, Shaohua
    Qi, Lianyong
    Xu, Xiaolong
    Tong, Chao
    Gu, Zonghua
    MOBILE NETWORKS & APPLICATIONS, 2020, 25 (02): : 743 - 755
  • [5] A pyramidal deep learning architecture for human action recognition
    Xie, Lidong
    Pan, Wei
    Tang, Chao
    Hu, Huosheng
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2014, 21 (02) : 139 - 146
  • [6] Real-Time Facemask Recognition with Alarm System using Deep Learning
    Militante, Sammy, V
    Dionisio, Nanette, V
    2020 11TH IEEE CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC), 2020, : 106 - 110
  • [7] Real-time Jordanian license plate recognition using deep learning
    Alghyaline, Salah
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) : 2601 - 2609
  • [8] Real-time speech emotion recognition using deep learning and data augmentation
    Barhoumi, Chawki
    Benayed, Yassine
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (02)
  • [9] A Real-Time System For Recognition Of American Sign Language By Using Deep Learning
    Taskiran, Murat
    Killioglu, Mehmet
    Kahraman, Nihan
    2018 41ST INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2018, : 258 - 261
  • [10] Real-Time Typical Urodynamic Signal Recognition System Using Deep Learning
    Liu, Xin
    Zhong, Ping
    Chen, Di
    Liao, Limin
    INTERNATIONAL NEUROUROLOGY JOURNAL, 2025, 29 (01) : 40 - 47