Stability estimates for the local Radon transform

被引:1
作者
Andersson, Joel [1 ]
Boman, Jan [1 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
关键词
radon transform; local injectivity; stability estimates; INVERSION-FORMULA;
D O I
10.1088/1361-6420/aaa99c
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse problem for the 2-dimensional local Radon transform R[f], where f is supported in y >= x(2) and R[f](xi, eta) = integral f (x, xi x + eta) dx is defined near (xi, eta) = (0, 0). We give logarithmic estimates of f in terms of R[f] for functions f that satisfy an a priori bound. For a certain class of smooth, positive weight functions m we give similar estimates for the weighted Radon transform R-m vertical bar f](xi, eta) = integral f (x, xi x + eta) m(xi, eta, x) dx.
引用
收藏
页数:23
相关论文
共 24 条
[1]  
Alexits G., 1961, International Series of Monographs in Pure and Applied Mathematics, V20
[2]  
[Anonymous], 1993, LINEAR PARTIAL DIFFE, DOI DOI 10.1142/1550
[3]  
Arbuzov EV., 1998, SIBERIAN ADV MATH, V8, P1
[4]   On the attenuated Radon transform with full and partial measurements [J].
Bal, G .
INVERSE PROBLEMS, 2004, 20 (02) :399-418
[5]   Novikov's inversion formula for the attenuated radon transform -: A new approach [J].
Boman, J ;
Strömberg, JO .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (02) :185-198
[6]   AN EXAMPLE OF NONUNIQUENESS FOR A GENERALIZED RADON-TRANSFORM [J].
BOMAN, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1993, 61 :395-401
[7]   SUPPORT THEOREMS FOR REAL-ANALYTIC RADON TRANSFORMS [J].
BOMAN, J ;
QUINTO, ET .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (04) :943-948
[9]  
Boman J, 2011, CONTEMP MATH, V559, P39
[10]   A LOCAL UNIQUENESS THEOREM FOR WEIGHTED RADON TRANSFORMS [J].
Boman, Jan .
INVERSE PROBLEMS AND IMAGING, 2010, 4 (04) :631-637