Power Allocation for Maritime Cognitive Satellite-UAV-Terrestrial Networks

被引:6
作者
Fang, Xinran [1 ]
Wang, Yanmin [2 ]
Feng, Wei [1 ]
Chen, Yunfei [3 ]
Ai, Bo [4 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] China Acad Elect & Informat Technol, Beijing 100041, Peoples R China
[3] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
[4] Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
来源
PROCEEDINGS OF 2020 IEEE 19TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2020) | 2020年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Cell-free; cognitive information; power allocation; satellite-UAV-terrestrial network; MIMO;
D O I
10.1109/ICCICC50026.2020.9450217
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate hybrid satellite-unmanned aerial vehicle (UAV)-terrestrial networks for maritime coverage enhancement. We adopt tethered UAVs to provide aerial base station (BS) sites, and orchestrate onshore and UAV-mounted BSs in a user-centric manlier. To address the spectrum scarcity problem, all available spectrum is shared among satellites, UAVs and terrestrial base stations (TBSs). This generates undesirable challenging co-channel interference (CCI) under the irregular cell-free system topology. We establish a cognitive framework to sense not only the spectrum status but also ships' position information. According to the cognitive information, user-centric virtual clusters are self organized by a group of UAVs and onshore BSs. Besides, location-dependent large-scale channel state information (CSI) can be obtained through the cognitive position information. We thus optimize the power allocation strategy with only the large-scale CSI, to further mitigate both the inter-cluster interference and leakage interference to satellite users. The problem is non-convex. By using the random matrix theory and successive convex optimization methods, we solve it in an iterative way. Simulation results corroborate the efficiency of the proposed cognitive framework and the presented power allocation scheme.
引用
收藏
页码:139 / 143
页数:5
相关论文
共 10 条
[1]   Optimum Placement of UAV as Relays [J].
Chen, Yunfei ;
Feng, Wei ;
Zheng, Gan .
IEEE COMMUNICATIONS LETTERS, 2018, 22 (02) :248-251
[2]   UAV-Aided MIMO Communications for 5G Internet of Things [J].
Feng, Wei ;
Wang, Jingchao ;
Chen, Yunfei ;
Wang, Xuanxuan ;
Ge, Ning ;
Lu, Jianhua .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (02) :1731-1740
[3]   Virtual MIMO in Multi-Cell Distributed Antenna Systems: Coordinated Transmissions with Large-Scale CSIT [J].
Feng, Wei ;
Wang, Yanmin ;
Ge, Ning ;
Lu, Jianhua ;
Zhang, Junshan .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2013, 31 (10) :2067-2081
[4]   Joint CoMP Transmission for UAV-Aided Cognitive Satellite Terrestrial Networks [J].
Hua, Meng ;
Wang, Yi ;
Lin, Min ;
Li, Chunguo ;
Huang, Yongming ;
Yang, Luxi .
IEEE ACCESS, 2019, 7 :14959-14968
[5]   LTE-Maritime: High-Speed Maritime Wireless Communication Based on LTE Technology [J].
Jo, Sung-Woong ;
Shim, Woo-Seong .
IEEE ACCESS, 2019, 7 :53172-53181
[6]   ENABLING 5G ON THE OCEAN: A HYBRID SATELLITE-UAV-TERRESTRIAL NETWORK SOLUTION [J].
Li, Xiangling ;
Feng, Wei ;
Wang, Jue ;
Chen, Yunfei ;
Ge, Ning ;
Wang, Cheng-Xiang .
IEEE WIRELESS COMMUNICATIONS, 2020, 27 (06) :116-121
[7]   Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks [J].
Li, Xiangling ;
Feng, Wei ;
Chen, Yunfei ;
Wang, Cheng-Xiang ;
Ge, Ning .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (04) :2355-2369
[8]   UAV-Aided Offloading for Cellular Hotspot [J].
Lyu, Jiangbin ;
Zeng, Yong ;
Zhang, Rui .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (06) :3988-4001
[9]  
Zeng Y, 2016, IEEE COMMUN MAG, V54, P36, DOI 10.1109/MCOM.2016.7470933
[10]   Generic Optimization of Linear Precoding in Multibeam Satellite Systems [J].
Zheng, Gan ;
Chatzinotas, Symeon ;
Ottersten, Bjorn .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2012, 11 (06) :2308-2320