Fixed-parameter tractability for subset feedback set problems with parity constraints

被引:8
作者
Kakimura, Naonori [1 ]
Kawarabayashi, Ken-ichi [2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Arts & Sci, Tokyo 1538902, Japan
[2] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[3] JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan
关键词
Fixed-parameter algorithm; Graph minor theory; Subset feedback set problem; Parity constraints; VERTEX SET; DISJOINT PATHS; ALGORITHMS; COMPLEXITY; CYCLES;
D O I
10.1016/j.tcs.2015.02.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The subset feedback set problem, which is a generalization of the well-known feedback vertex set problem, is that we are given an undirected graph G with a vertex subset S and a positive integer k, and the goal is to find a vertex set X of size at most k such that G - X has no S-cycle, where an S-cycle is a cycle having at least one vertex of S. It was recently shown that this problem is fixed parameter tractable, where k is the parameter. In this paper, we further generalize this problem to one with the parity constraints, and show the fixed parameter tractability: 1. For a parameter k, there exists a fixed-parameter algorithm that either finds a vertex set X of size k such that G - X has no S-cycle of even length, or concludes that such a vertex set does not exist. 2. For a parameter k, there exists a fixed-parameter algorithm that either finds a vertex set X of size k such that G - X has no S-cycle of odd length, or concludes that such a vertex set does not exist. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 39 条
[1]  
[Anonymous], 1972, Complexity of Computer Computations, DOI [10.1007/978-3-540-68279-0-8, DOI 10.1007/978-1-4684-2001-2]
[2]   LINEAR TIME ALGORITHMS FOR NP-HARD PROBLEMS RESTRICTED TO PARTIAL K-TREES [J].
ARNBORG, S ;
PROSKUROWSKI, A .
DISCRETE APPLIED MATHEMATICS, 1989, 23 (01) :11-24
[3]   A 2-approximation algorithm for the undirected feedback vertex set problem [J].
Bafna, V ;
Berman, P ;
Fujito, T .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (03) :289-297
[4]   Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference [J].
Bar-Yehuda, R ;
Geiger, D ;
Naor, J ;
Roth, RM .
SIAM JOURNAL ON COMPUTING, 1998, 27 (04) :942-959
[5]   A min-max theorem on feedback vertex sets [J].
Cai, MC ;
Deng, XT ;
Zang, WN .
MATHEMATICS OF OPERATIONS RESEARCH, 2002, 27 (02) :361-371
[6]   A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs [J].
Chudak, FA ;
Goemans, MX ;
Hochbaum, DS ;
Williamson, DP .
OPERATIONS RESEARCH LETTERS, 1998, 22 (4-5) :111-118
[7]   SUBSET FEEDBACK VERTEX SET IS FIXED-PARAMETER TRACTABLE [J].
Cygan, Marek ;
Pilipczuk, Marcin ;
Pilipczuk, Michal ;
Wojtaszczyk, Jakub Onufry .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) :290-309
[8]   Solving connectivity problems parameterized by treewidth in single exponential time (Extended abstract) [J].
Cygan, Marek ;
Nederlof, Jesper ;
Pilipczuk, Marcin ;
Pilipczuk, Michal ;
van Rooij, Johan M. M. ;
Wojtaszczyk, Jakub Onufry .
2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, :150-159
[9]   THE COMPLEXITY OF MULTITERMINAL CUTS [J].
DAHLHAUS, E ;
JOHNSON, DS ;
PAPADIMITRIOOU, CH ;
SEYMOUR, PD ;
YANNAKAKIS, M .
SIAM JOURNAL ON COMPUTING, 1994, 23 (04) :864-894
[10]  
Dejter I., 1985, 4 CAR C COMP PUERT R