The Mutual Singularity of Harmonic Measure and Hausdorff Measure of Codimension Smaller than One

被引:1
作者
Tolsa, Xavier [1 ,2 ]
机构
[1] ICREA, Dept Matemat, Passeig Lluis Companys 23, Barcelona 08010, Catalonia, Spain
[2] Univ Autemoma Barcelona, BGSMath, Bellaterra 08193, Barcelona, Spain
关键词
UNIFORM RECTIFIABILITY; POISSON KERNELS; DIMENSION; SETS;
D O I
10.1093/imrn/rnz197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of Rn+1 be open and let E subset of partial derivative Omega with 0 < H-s(E) < infinity, for some s is an element of(n, n + 1), satisfy a local capacity density condition. In this paper it is shown that the harmonic measure cannot be mutually absolutely continuous with the Hausdorff measure H-s on E. This answers a question of Azzam and Mourgoglou, who had proved the same result under the additional assumption that Omega is a uniform domain.
引用
收藏
页码:13783 / 13811
页数:29
相关论文
共 25 条
  • [1] [Anonymous], 1995, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ
  • [2] Azzam J., 2017, INT MATH RES NOT IMR
  • [3] Azzam J., 2016, ARXIV161202650
  • [4] Azzam J., 2018, POTENTAIL ANAL
  • [5] Tangent measures and absolute continuity of harmonic measure
    Azzam, Jonas
    Mourgoglou, Mihalis
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) : 305 - 330
  • [6] Rectifiability of harmonic measure
    Azzam, Jonas
    Hofmann, Steve
    Martell, Jose Maria
    Mayboroda, Svitlana
    Mourgoglou, Mihalis
    Tolsa, Xavier
    Volberg, Alexander
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 703 - 728
  • [7] Batakis A, 1996, ANN ACAD SCI FENN-M, V21, P255
  • [8] Dimension of the harmonic measure of non-homogeneous Cantor sets
    Batakis, Athanasios
    [J]. ANNALES DE L INSTITUT FOURIER, 2006, 56 (06) : 1617 - 1631
  • [9] ON THE HAUSDORFF DIMENSION OF HARMONIC MEASURE IN HIGHER DIMENSION
    BOURGAIN, J
    [J]. INVENTIONES MATHEMATICAE, 1987, 87 (03) : 477 - 483
  • [10] UNIFORM RECTIFIABILITY FROM CARLESON MEASURE ESTIMATES AND ε-APPROXIMABILITY OF BOUNDED HARMONIC FUNCTIONS
    Garnett, John
    Mourgoglou, Mihalis
    Tolsa, Xavier
    [J]. DUKE MATHEMATICAL JOURNAL, 2018, 167 (08) : 1473 - 1524