Spherical Simplex Unscented Kalman Filter-Based Jumping and Static Interacting Multiple Model

被引:2
作者
Pan, Yi [1 ]
Ye, Hui [1 ]
He, Keke [1 ]
机构
[1] Changsha Univ, Dept Math & Comp Sci, Changsha 410022, Hunan, Peoples R China
关键词
Interacting multiple model; parameter estimation; spherical simplex unscented; Kalman filter; TARGET; ALGORITHM;
D O I
10.1142/S0218001418500106
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A modified interacting multiple model (IMM) method called spherical simplex unscented Kalman filter-based jumping and static IMM (SSUKF-JSIMM) is proposed to solve the problem of nonlinear filtering with unknown continuous system parameter. SSUKF-JSIMM regards the continuous system parameter space as a union of disjoint regions, and each region is assigned to a model. For each model, under the assumption that the parameter belongs to the corresponding region, one sub-filter is used to estimate the parameter and the state when the parameter is presumed to be jumping, and another sub-filter is used to estimate the parameter and the state when the parameter is presumed to be static. Considering that spherical simplex unscented Kalman filter (SSUKF) is more suitable for a real-time system than the unscented Kalman filter (UKF), SSUKFs are adopted as the sub-filters of SSUKF-JSIMM. Results of the two SSUKFs are fused as the estimation output of the model. Experimental results show that SSUKF-JSIMM achieves higher performance than IMM, SIR, and UKF in bearings-only tracking problem.
引用
收藏
页数:12
相关论文
共 15 条
[1]  
Bistrovs V., 2015, ELEKTRON ELEKTROTECH, V86, P89
[2]   THE INTERACTING MULTIPLE MODEL ALGORITHM FOR SYSTEMS WITH MARKOVIAN SWITCHING COEFFICIENTS [J].
BLOM, HAP ;
BARSHALOM, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (08) :780-783
[3]   A comparison of nonlinear filtering approaches with an application to ground target tracking [J].
Cui, NZ ;
Hong, L ;
Layne, JR .
SIGNAL PROCESSING, 2005, 85 (08) :1469-1492
[4]  
Duda R. O., 2004, PATTERN CLASSIFICATI, P100
[5]   A self-organizing state-space model [J].
Kitagawa, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) :1203-1215
[6]   Second-Order Markov Chain Based Multiple-Model Algorithm for Maneuvering Target Tracking [J].
Lan, Jian ;
Li, X. Rong ;
Jilkov, Vesselin P. ;
Mu, Chundi .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (01) :3-19
[7]   Survey of maneuvering target tracking. Part I: Dynamic models [J].
Li, XR ;
Jilkov, VP .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2003, 39 (04) :1333-1364
[8]  
Lozano JGC, 2008, P AMER CONTR CONF, P3536
[9]   Multiple model bootstrap filter for maneuvering target tracking [J].
Shaun, McGinnity ;
George, W.Irwin .
IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 (3 I) :1006-1012