The strong law of large numbers for pairwise NQD random variables

被引:15
作者
Wu, Qunying [1 ]
Jiang, Yuanying [1 ]
机构
[1] Guilin Univ Technol, Coll Sci, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Almost sure convergence; pairwise negatively quadrant dependent random variables; strong law of large numbers; DEPENDENT RANDOM-VARIABLES;
D O I
10.1007/s11424-011-8086-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the almost sure convergence for pairwise negatively quadrant dependent random variables is studied. The strong law of large numbers for pairwise negatively quadrant dependent random variables is obtained. Our results generalize and improve those on almost sure convergence theorems previously obtained by Marcinkiewicz (1937), Jamison (1965), Matula (1992) and Wu (2001) from the independent identically distributed (i.i.d.) case to pairwise NQD sequences.
引用
收藏
页码:347 / 357
页数:11
相关论文
共 50 条
[41]   On strong law of large numbers and growth rate for a class of random variables [J].
Yan Shen ;
Jie Yang ;
Shuhe Hu .
Journal of Inequalities and Applications, 2013
[42]   The strong law of large numbers for sums of randomly chosen random variables [J].
Agnieszka M. Gdula ;
Andrzej Krajka .
Lithuanian Mathematical Journal, 2021, 61 :471-482
[43]   ON THE STRONG LAW OF LARGE NUMBERS FOR WEIGHTED SUMS OF φ-MIXING RANDOM VARIABLES [J].
Huang, Haiwu ;
Wang, Dingcheng ;
Peng, Jiangyan .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (03) :465-473
[44]   The strong law of large numbers for sums of randomly chosen random variables [J].
Gdula, Agnieszka M. ;
Krajka, Andrzej .
LITHUANIAN MATHEMATICAL JOURNAL, 2021, 61 (04) :471-482
[45]   THE STRONG LAW OF LARGE NUMBERS FOR EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES [J].
Chen, Yiqing ;
Chen, Anyue ;
Ng, Kai W. .
JOURNAL OF APPLIED PROBABILITY, 2010, 47 (04) :908-922
[46]   Kolmogorov's strong law of large numbers for fuzzy random variables [J].
Joo, SY ;
Kim, YK .
FUZZY SETS AND SYSTEMS, 2001, 120 (03) :499-503
[47]   On the strong law of large numbers for identically distributed random variables irrespective of their joint distributions [J].
Rosalsky, Andrew ;
Stoica, George .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (17-18) :1265-1270
[48]   Complete moment convergence of pairwise NQD random variables [J].
Yang, Wenzhi ;
Hu, Shuhe .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2015, 87 (02) :199-208
[49]   The strong law of large numbers for negatively dependent generalized Gaussian random variables [J].
Amini, M ;
Azarnoosh, HA ;
Bozorgnia, A .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (04) :893-901
[50]   On the strong law of large numbers for d-dimensional arrays of random variables [J].
Thanh, Le Van .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :434-441