The strong law of large numbers for pairwise NQD random variables

被引:15
作者
Wu, Qunying [1 ]
Jiang, Yuanying [1 ]
机构
[1] Guilin Univ Technol, Coll Sci, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Almost sure convergence; pairwise negatively quadrant dependent random variables; strong law of large numbers; DEPENDENT RANDOM-VARIABLES;
D O I
10.1007/s11424-011-8086-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the almost sure convergence for pairwise negatively quadrant dependent random variables is studied. The strong law of large numbers for pairwise negatively quadrant dependent random variables is obtained. Our results generalize and improve those on almost sure convergence theorems previously obtained by Marcinkiewicz (1937), Jamison (1965), Matula (1992) and Wu (2001) from the independent identically distributed (i.i.d.) case to pairwise NQD sequences.
引用
收藏
页码:347 / 357
页数:11
相关论文
共 50 条
[21]   ON THE STRONG LAW OF LARGE NUMBERS FOR NONNEGATIVE RANDOM VARIABLES [J].
Petrov, V. V. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (02) :346-U168
[22]   The strong law of large numbers for dependent random variables [J].
Kuczmaszewska, A .
STATISTICS & PROBABILITY LETTERS, 2005, 73 (03) :305-314
[23]   Strong laws of large numbers for pairwise quadrant dependent random variables [J].
da Silva, Joao Lita .
STATISTICS & PROBABILITY LETTERS, 2018, 137 :349-358
[24]   On stochastic dominance and the strong law of large numbers for dependent random variables [J].
Habib Naderi ;
Przemysław Matuła ;
Mohammad Amini ;
Abolghasem Bozorgnia .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 :771-782
[25]   On stochastic dominance and the strong law of large numbers for dependent random variables [J].
Naderi, Habib ;
Matua, Przemyslaw ;
Amini, Mohammad ;
Bozorgnia, Abolghasem .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) :771-782
[26]   Marcinkiewicz-Zygmund Type Strong Law of Large Numbers for Pairwise i.i.d. Random Variables [J].
Sung, Soo Hak .
JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (01) :96-106
[27]   On strong law of large numbers and growth rate for a class of random variables [J].
Shen, Yan ;
Yang, Jie ;
Hu, Shuhe .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[28]   Generalization of strong law of large numbers for nonnegative random variables [J].
Ghazani, Z. Shokooh .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (05) :128-132
[29]   Strong Law of Large Numbers for Negatively Associated Random Variables [J].
Wang, Yourong ;
Tan, Yili ;
Liu, Yanli .
INFORMATION COMPUTING AND APPLICATIONS, PT II, 2011, 244 :18-+
[30]   On the strong law of large numbers for φ-mixing and ρ-mixing random variables [J].
Anna Kuczmaszewska .
Acta Mathematica Hungarica, 2011, 132 :174-189