Phase diagram of the hexagonal lattice quantum dimer model: Order parameters, ground-state energy, and gaps

被引:8
作者
Schlittler, Thiago M. [1 ]
Mosseri, Remy [1 ]
Barthel, Thomas [2 ,3 ]
机构
[1] Univ Paris 06, Sorbonne Univ, UMR CNRS, Lab Phys Theor Matiere Condensee, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Duke Univ, Dept Phys, Durham, NC 27708 USA
[3] Univ Paris 11, CNRS UMR 8626, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
关键词
MONTE-CARLO SIMULATIONS; RESONATING VALENCE BONDS; SPIN SYSTEMS; ANALYTIC CONTINUATION; DYNAMICS; ALGORITHM; GAS;
D O I
10.1103/PhysRevB.96.195142
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase diagram of the quantum dimer model on the hexagonal (honeycomb) lattice is computed numerically, extending on earlier work by Moessner, Sondhi, and Chandra. The different ground state phases are studied in detail using several local and global observables. In addition, we analyze imaginary-time correlation functions to determine ground state energies as well as gaps to the first excited states. This leads in particular to a confirmation that the intermediary so-called plaquette phase is gapped. On the technical side, we describe an efficient world-line quantum Monte Carlo algorithm with improved cluster updates that increase acceptance probabilities by taking account of potential terms of the Hamiltonian during the cluster construction. The Monte Carlo simulations are supplemented with variational computations.
引用
收藏
页数:16
相关论文
共 34 条
  • [1] Phase diagram of a frustrated quantum antiferromagnet on the honeycomb lattice: Magnetic order versus valence-bond crystal formation
    Albuquerque, A. F.
    Schwandt, D.
    Hetenyi, B.
    Capponi, S.
    Mambrini, M.
    Laeuchli, A. M.
    [J]. PHYSICAL REVIEW B, 2011, 84 (02)
  • [2] RESONATING VALENCE BONDS - NEW KIND OF INSULATOR
    ANDERSON, PW
    [J]. MATERIALS RESEARCH BULLETIN, 1973, 8 (02) : 153 - 160
  • [3] Stable Quantum Monte Carlo algorithm for T=0 calculation of imaginary time Green functions
    Assaad, FF
    Imada, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (01) : 189 - 194
  • [4] Quantum Monte Carlo simulations of the half-filled two-dimensional Kondo lattice model
    Assaad, FF
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (04) : 796 - 799
  • [5] ROUGHENING TRANSITIONS AND THE ZERO-TEMPERATURE TRIANGULAR ISING ANTIFERROMAGNET
    BLOTE, HWJ
    HILHORST, HJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (11): : L631 - L637
  • [6] A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION
    BYRD, RH
    LU, PH
    NOCEDAL, J
    ZHU, CY
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) : 1190 - 1208
  • [7] SOLUTION OF THE DIMER PROBLEM ON A HEXAGONAL LATTICE WITH BOUNDARY
    ELSER, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07): : 1509 - 1513
  • [8] Bipartite Rokhsar-Kivelson points and cantor deconfinement
    Fradkin, E
    Huse, DA
    Moessner, R
    Oganesyan, V
    Sondhi, SL
    [J]. PHYSICAL REVIEW B, 2004, 69 (22) : 224415 - 1
  • [9] QUANTUM MONTE-CARLO SIMULATIONS AND MAXIMUM-ENTROPY - DYNAMICS FROM IMAGINARY-TIME DATA
    GUBERNATIS, JE
    JARRELL, M
    SILVER, RN
    SIVIA, DS
    [J]. PHYSICAL REVIEW B, 1991, 44 (12): : 6011 - 6029
  • [10] From classical to quantum dynamics at Rokhsar-Kivelson points
    Henley, CL
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (11) : S891 - S898