Lower bound of effective yield strength domain for random heterogeneous materials

被引:4
作者
Turgeman, Sylvain [1 ]
Guessab, Benaceur [1 ]
机构
[1] Univ Grenoble 1, Grenoble, France
关键词
Yield design; Homogenization; Random material; Effective yield strength; Infmax problem;
D O I
10.1016/j.mechrescom.2011.03.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A random heterogeneous material is represented by a finite family of microstructures, the environment of each microstructure being subjected to a perfect mix condition whose validity is justified both theoretically and numerically. Necessary conditions, satisfied by any permissible strain rate field on a representative and unlimited domain oldie material, are highlighted. They enable one to obtain, by solving a discrete infmax problem, a lower bound of the effective yield strength domain of the material, that is rigorous and more predictive than the classical bound of Reuss. An analytical application on a porous medium illustrates the methodology. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:181 / 185
页数:5
相关论文
共 11 条
  • [1] VARIATIONAL MICRO-MACRO TRANSITION, WITH APPLICATION TO REINFORCED MORTARS
    ARMINJON, M
    CHAMBARD, T
    TURGEMAN, S
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1994, 31 (05) : 683 - 704
  • [2] BORNERT M, 2001, HOMOGENEISATION MECA, V2
  • [3] CHEN L, 2007, MECH RES COMMUN, DOI DOI 10.1016/J.EUROMECHSOL.2007.05
  • [4] DEBUHAN P, 1983, C N R S COLL FAILURE
  • [5] PASTOR J, 2002, 5 NUMGE 5 EUR C NUM
  • [6] SAB K, 1994, CR HEBD ACAD SCI, V2, P491
  • [7] Salencon: J., 1983, Calcul a la rupture et Analyse Limite
  • [8] SUQUET P, 1983, CR HEBD ACAD SCI, V2, P1355
  • [9] TRILLAT M, 2005, THESIS U SAVOIE CHAM
  • [10] Turgeman S, 1999, STRUCT OPTIMIZATION, V18, P247, DOI 10.1007/s001580050075