Classification of the Associativity Equations with A First-Order Hamiltonian Operator

被引:4
作者
Mokhov, O. I. [1 ]
Pavlenko, N. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
associativity equations; nondiagonalizable system of hydrodynamic type; Dubrovin-Novikov Hamiltonian operator; flat metric; Haantjes tensor; TOPOLOGICAL FIELD-THEORY; SYSTEMS;
D O I
10.1134/S0040577918100070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Hamiltonian geometry of systems of hydrodynamic type that are equivalent to the associativity equations in the case of three primary fields and obtain the complete classification of the associativity equations with respect to the existence of a first-order Dubrovin-Novikov Hamiltonian structure.
引用
收藏
页码:1501 / 1513
页数:13
相关论文
共 15 条
  • [1] Criteria for Existence of a Hamiltonian Structure
    Bogoyavlenskij, O. I.
    Reynolds, A. P.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2010, 15 (4-5) : 431 - 439
  • [2] TOPOLOGICAL STRINGS IN D-LESS-THAN-1
    DIJKGRAAF, R
    VERLINDE, H
    VERLINDE, E
    [J]. NUCLEAR PHYSICS B, 1991, 352 (01) : 59 - 86
  • [3] DUBROVIN B., 1996, Montecatini Terme, 1993), Lecture Notes in Math., V1620, P120, DOI 10.1007/BFb0094793
  • [4] Dubrovin B. A., 1989, RUSS MATH SURV, V44, P35, DOI 10.1070/RM1989v044n06ABEH002300
  • [5] Dubrovin B.A., 1983, SOV MATH DOKL, V27, P665
  • [6] The associativity equations in the two-dimensional topological field theory as integrable Hamiltonian nondiagonalizable systems of hydrodynamic type
    Ferapontov, EV
    Mokhov, OI
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1996, 30 (03) : 195 - 203
  • [7] ON INTEGRABILITY OF 3X3 SEMI-HAMILTONIAN HYDRODYNAMIC TYPE SYSTEMS UT(I) = VJ(I)(U) UX(J) WHICH DO NOT POSSESS RIEMANN INVARIANTS
    FERAPONTOV, EV
    [J]. PHYSICA D, 1993, 63 (1-2): : 50 - 70
  • [8] Ferapontov EV, 1997, COMMUN MATH PHYS, V186, P649, DOI 10.1007/s002200050123
  • [9] HAANTJES A, 1955, INDAG MATH, V17, P158, DOI [10.1016/S1385-7258(55)50021-7, DOI 10.1016/S1385-7258(55)50021-7]
  • [10] Alternative bi-Hamiltonian structures for WDVV equations of associativity
    Kalayci, J
    Nutku, Y
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 723 - 734