Exact waiting time and queue size distributions for equilibrium M/G/1 queues with Pareto service

被引:16
作者
Ramsay, Colin M. [1 ]
机构
[1] Univ Nebraska, Dept Finance, Lincoln, NE 68588 USA
关键词
Laplace transform; Kummer function; generalized exponential integral; steady-state queue; Pollaczek-Khinchin formula; power-tail; heavy-tail; heavy traffic;
D O I
10.1007/s11134-007-9052-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper solves the problem of finding exact formulas for the waiting time cdf and queue length distribution of first-in-first-out M/G/1 queues in equilibrium with Pareto service. The formulas derived are new and are obtained by directly inverting the relevant Pollaczek-Khinchin formula and involve single integrals of non-oscillating real valued functions along the positive real line. Tables of waiting time and queue length probabilities are provided for certain parameter values under heavy traffic conditions.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 25 条
[1]   Explicit M/G/1 waiting-time distributions for a class of long-tail service-time distributions [J].
Abate, J ;
Whitt, W .
OPERATIONS RESEARCH LETTERS, 1999, 25 (01) :25-31
[2]  
Abate J., 1992, Queueing Systems Theory and Applications, V10, P5, DOI 10.1007/BF01158520
[3]  
Abate J., 1999, COMPUTATIONAL PROBAB, P257
[4]   A unified framework for numerically inverting Laplace transforms [J].
Abate, Joseph ;
Whitt, Ward .
INFORMS JOURNAL ON COMPUTING, 2006, 18 (04) :408-421
[5]  
[Anonymous], 1964, Handbook of mathematical functions
[6]  
Asmussen S., 2000, ADV SERIES STAT SCI, V2
[7]   The M/G/1 queue with heavy-tailed service time distribution [J].
Boxma, OJ ;
Cohen, JW .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1998, 16 (05) :749-763
[8]  
Crovella ME, 1998, PRACTICAL GUIDE TO HEAVY TAILS, P3
[9]  
Goldie CM, 1998, PRACTICAL GUIDE TO HEAVY TAILS, P435
[10]  
Goovaerts MJ., 1977, SCAND ACTUAR J, V1, P21, DOI [10.1080/03461238.1977.10405622, DOI 10.1080/03461238.1977.10405622]