Enhancement of the electrochemical performance of lithium-ion batteries by SiO2@poly(2-acrylamido-2-methylpropanesulfonic acid) nanosphere addition into a polypropylene membrane

被引:4
|
作者
Yang, Guoping [1 ]
Cai, Haopeng [1 ,3 ]
Li, Xiangyu [1 ]
Wu, Mengjun [2 ]
Yin, Xue [1 ]
Zhang, Haining [2 ]
Tang, Haolin [2 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Inst Adv Mat Mfg Equipment & Technol, Wuhan 430070, Peoples R China
关键词
POLYMER ELECTROLYTES; ANODE MATERIAL; COMPOSITE; SEPARATOR; ELECTRODES; NANOPARTICLES; OXIDE; DESIGN; FILM;
D O I
10.1039/c9ra08273e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Employing electrostatic self-assembly and free radical polymerization, the surface of SiO2 nanospheres was coated with poly(2-acrylamido-2-methylpropanesulfonic acid) (SiO2@PAMPS) bearing strong electron withdrawing sulfonic and amide groups, enhancing the dissociation ability of the lithium salt of the liquid electrolyte and absorbing anions via hydrogen bonds. After SiO2@PAMPS nanospheres were introduced into the polypropylene (PP) membrane (SiO2@PAMPS/PP), the electrolyte affinity and electrolyte uptake of the composite separators were significantly improved. The ionic conductivity of SiO2@PAMPS/PP-18% (where 18% represents the concentration of the solution used for coating) soaked in liquid electrolyte was even 0.728 mS cm(-1) at 30 degrees C, much higher than that of the pristine PP membrane. The LiFePO4/Li half-cell with SiO2@PAMPS/PP-18% had a discharge capacity of 148.10 mA h g(-1) and retained 98.67% of the original capacity even after 120 cycles at 0.5C. Even at a rate of 1.0C, the cell capacity could be maintained above 120 mA h g(-1). Therefore, a coating formula was developed that could considerably improve the cycling ability and high rate charge-discharge performance of lithium ion batteries.
引用
收藏
页码:5077 / 5087
页数:11
相关论文
共 50 条
  • [41] α-Fe2O3 nanoplates with superior electrochemical performance for lithium-ion batteries
    Xu, Li
    Tian, Yuhui
    Liu, Tiefeng
    Li, Henan
    Qiu, Jingxia
    Li, Sheng
    Li, Huaming
    Yuan, Shouqi
    Zhang, Shanqing
    GREEN ENERGY & ENVIRONMENT, 2018, 3 (02) : 156 - 162
  • [42] The Influence of TiO2 Nanoparticles Morphologies on the Performance of Lithium-Ion Batteries
    Luo, Wenpo
    Blanchard, Juliette
    Xue, Yanpeng
    Taleb, Abdelhafed
    NANOMATERIALS, 2023, 13 (19)
  • [43] Electrochemical Performance of Cr2O3/TiO2 Composite Material for Lithium Ion Batteries
    Zhao Xing
    Zhuang Quan-Chao
    Qiu Xiang-Yun
    Xu Shou-Dong
    Shi Yue-Li
    Cui Yong-Li
    ACTA PHYSICO-CHIMICA SINICA, 2011, 27 (07) : 1666 - 1672
  • [44] Electrospinning of GeO2-C fibers and electrochemical application in lithium-ion batteries
    Yang, Qi
    Sun, Tao
    Yu, Jia-Yu
    Ma, Jin-Xin
    CHINESE CHEMICAL LETTERS, 2016, 27 (03) : 412 - 416
  • [45] Study on SnO2/graphene composites with superior electrochemical performance for lithium-ion batteries
    Chen, Binbin
    Qian, Hang
    Xu, Jianhui
    Qin, Linlin
    Wu, Qi-Hui
    Zheng, Mingsen
    Dong, Quanfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (24) : 9345 - 9352
  • [46] Improved electrochemical performance of Cu-Sn/nano-SiO2 composite anode materials for lithium-ion batteries fabricated by controlled electrodeposition
    Wen, Minyue
    Yu, Limin
    Nie, Shuqing
    Xiao, Wei
    ELECTROCHIMICA ACTA, 2024, 496
  • [47] Synthesis and electrochemical performance of ZnCo2O4 for lithium-ion battery application
    Wang, Wei
    Yang, Yun
    Yang, Shuijin
    Guo, Zaiping
    Feng, Chuanqi
    Tang, Xingchun
    ELECTROCHIMICA ACTA, 2015, 155 : 297 - 304
  • [48] TiO2 nanocrystalline-assembled mesoporous nanosphere as high-performance anode for lithium-ion batteries
    Wu, Y.
    Yuan, Y. F.
    Chen, F.
    Zhu, M.
    Cai, G. C.
    Yin, S. M.
    Yang, J. L.
    Guo, S. Y.
    MATERIALS LETTERS, 2019, 240 : 96 - 99
  • [49] Synthesis of graphene supported Li2SiO3 as a high performance anode material for lithium-ion batteries
    Yang, Shuai
    Wang, Qiufen
    Miao, Juan
    Zhang, Jingyang
    Zhang, Dafeng
    Chen, Yumei
    Yang, Hong
    APPLIED SURFACE SCIENCE, 2018, 444 : 522 - 529
  • [50] LiTi2(PO4)3/reduced graphene oxide nanocomposite with enhanced electrochemical performance for lithium-ion batteries
    Roh, Ha-Kyung
    Kim, Hyun-Kyung
    Roh, Kwang Chul
    Kim, Kwang-Bum
    RSC ADVANCES, 2014, 4 (60) : 31672 - 31677