Sparse plus low-rank autoregressive identification in neuroimaging time series

被引:0
作者
Liegeois, Raphael [1 ]
Mishra, Bamdev [1 ,3 ]
Zorzi, Mattia [2 ]
Sepulchre, Rodolphe [1 ,3 ]
机构
[1] Univ Liege, Dept Elect Engn & Comp Sci, Liege, Belgium
[2] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[3] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
来源
2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2015年
关键词
MODEL SELECTION; NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the problem of identifying multivariate autoregressive (AR) sparse plus low-rank graphical models. Based on a recent problem formulation, we use the alternating direction method of multipliers (ADMM) to solve it efficiently as a convex program for sizes encountered in neuroimaging applications. We apply this algorithm on synthetic and real neuroimaging datasets with a specific focus on the information encoded in the low-rank structure of our model. In particular, we illustrate that this information captures the spatio-temporal structure of the original data, generalizing classical component analysis approaches.
引用
收藏
页码:3965 / 3970
页数:6
相关论文
共 21 条
[1]  
[Anonymous], 2002, Series: Springer Series in Statistics
[2]  
[Anonymous], 1997, INTRO SPECTRAL ANAL
[3]  
[Anonymous], CVX MATLAB SOFTWARE
[4]  
[Anonymous], 2013, Matrix analysis
[5]  
Banerjee O, 2008, J MACH LEARN RES, V9, P485
[6]  
Berg E. V. D., 2008, TECHNICAL REPORT
[7]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[8]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[9]   A convex optimization approach to the rational covariance extension problem [J].
Byrnes, CI ;
Gusev, SV ;
Lindquist, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 37 (01) :211-229
[10]  
Chandrasekaran V, 2012, ANN STAT, V40, P1935, DOI 10.1214/11-AOS949