ON FIXED-DOMAIN ASYMPTOTICS, PARAMETER ESTIMATION AND ISOTROPIC GAUSSIAN RANDOM FIELDS WITH MATERN COVARIANCE FUNCTIONS

被引:12
作者
Loh, Wei-Liem [1 ]
Sun, Saifei [1 ]
Wen, Jun [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
关键词
Consistency; convergence rate; deformed lattice; fixed-domain asymptotics; Gaussian random field; quadratic variation; irregularly spaced data; Matern covariance; microergodic parameter; random sampling; smoothness; FRACTAL DIMENSION; SMOOTHNESS;
D O I
10.1214/21-AOS2077
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A method is proposed for estimating the microergodic parameters (including the smoothness parameter) of stationary Gaussian random fields on R-d with isotropic Matern covariance functions using irregularly spaced data. This approach uses higher-order quadratic variations and is applied to three designs, namely stratified sampling design, randomized sampling design and deformed lattice design. Microergodic parameter estimators are constructed for each of the designs. Under mild conditions, these estimators are shown to be consistent with respect to fixed-domain asymptotics. Upper bounds to the convergence rate of the estimators are also established. A simulation study is conducted to gauge the accuracy of the proposed estimators.
引用
收藏
页码:3127 / 3152
页数:26
相关论文
共 27 条
[1]   UNIFORM QUADRATIC VARIATION FOR GAUSSIAN-PROCESSES [J].
ADLER, RJ ;
PYKE, R .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 48 (02) :191-209
[2]   CONSISTENT ESTIMATES OF DEFORMED ISOTROPIC GAUSSIAN RANDOM FIELDS ON THE PLANE [J].
Anderes, Ethan ;
Chatterjee, Sourav .
ANNALS OF STATISTICS, 2009, 37 (5A) :2324-2350
[3]   Estimating deformations of isotropic Gaussian random fields on the plane [J].
Anderes, Ethan B. ;
Stein, Michael L. .
ANNALS OF STATISTICS, 2008, 36 (02) :719-741
[4]  
Andrews G.E., 1999, ENCY MATH ITS APPL, V71
[5]   Identification of filtered white noises [J].
Benassi, A ;
Cohen, S ;
Istas, J ;
Jaffard, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (01) :31-49
[6]   Global smoothness estimation of a Gaussian process from general sequence designs [J].
Blanke, Delphine ;
Vial, Celine .
ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 :1152-1187
[7]  
Chan G, 2000, STAT SINICA, V10, P343
[8]  
CONSTANTINE AG, 1994, J ROY STAT SOC B, V56, P97
[9]   FIXED-DOMAIN ASYMPTOTIC PROPERTIES OF TAPERED MAXIMUM LIKELIHOOD ESTIMATORS [J].
Du, Juan ;
Zhang, Hao ;
Mandrekar, V. S. .
ANNALS OF STATISTICS, 2009, 37 (6A) :3330-3361
[10]  
Grenander U., 2007, Pattern theory: From Representation to Inference