Weighted principal component analysis: a weighted covariance eigendecomposition approach

被引:57
作者
Delchambre, L. [1 ]
机构
[1] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
methods: data analysis; quasars: general; DIGITAL-SKY-SURVEY; MAXIMUM-LIKELIHOOD; LEAST-SQUARES; MATRICES;
D O I
10.1093/mnras/stu2219
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a new straightforward principal component analysis (PCA) method based on the diagonalization of the weighted variance-covariance matrix through two spectral decomposition methods: power iteration and Rayleigh quotient iteration. This method allows one to retrieve a given number of orthogonal principal components amongst the most meaningful ones for the case of problems with weighted and/or missing data. Principal coefficients are then retrieved by fitting principal components to the data while providing the final decomposition. Tests performed on real and simulated cases show that our method is optimal in the identification of the most significant patterns within data sets. We illustrate the usefulness of this method by assessing its quality on the extrapolation of Sloan Digital Sky Survey quasar spectra from measured wavelengths to shorter and longer wavelengths. Our new algorithm also benefits from a fast and flexible implementation.
引用
收藏
页码:3545 / 3555
页数:11
相关论文
共 23 条
  • [1] [Anonymous], 2002, Series: Springer Series in Statistics
  • [2] The Gaia astrophysical parameters inference system (Apsis) Pre-launch description
    Bailer-Jones, C. A. L.
    Andrae, R.
    Arcay, B.
    Astraatmadja, T.
    Bellas-Velidis, I.
    Berihuete, A.
    Bijaoui, A.
    Carrion, C.
    Dafonte, C.
    Damerdji, Y.
    Dapergolas, A.
    de Laverny, P.
    Delchambre, L.
    Drazinos, P.
    Drimmel, R.
    Fremat, Y.
    Fustes, D.
    Garcia-Torres, M.
    Guede, C.
    Heiter, U.
    Janotto, A. -M.
    Karampelas, A.
    Kim, D. -W.
    Knude, J.
    Kolka, I.
    Kontizas, E.
    Kontizas, M.
    Korn, A. J.
    Lanzafame, A. C.
    Lebreton, Y.
    Lindstrom, H.
    Liu, C.
    Livanou, E.
    Lobel, A.
    Manteiga, M.
    Martayan, C.
    Ordenovic, Ch.
    Pichon, B.
    Recio-Blanco, A.
    Rocca-Volmerange, B.
    Sarro, L. M.
    Smith, K.
    Sordo, R.
    Soubiran, C.
    Surdej, J.
    Thevenin, F.
    Tsalmantza, P.
    Vallenari, A.
    Zorec, J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2013, 559
  • [3] Principal Component Analysis with Noisy and/or Missing Data
    Bailey, Stephen
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2012, 124 (919) : 1015 - 1023
  • [4] BEALE EML, 1975, J ROY STAT SOC B MET, V37, P129
  • [5] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [6] LOWER RANK APPROXIMATION OF MATRICES BY LEAST-SQUARES WITH ANY CHOICE OF WEIGHTS
    GABRIEL, KR
    ZAMIR, S
    [J]. TECHNOMETRICS, 1979, 21 (04) : 489 - 498
  • [7] Golub G.H., 2013, Matrix computations, V3
  • [8] Greenacre M.J., 1984, Theory and Applications of Correspondence Analysis
  • [9] Analysis of a complex of statistical variables into principal components
    Hotelling, H
    [J]. JOURNAL OF EDUCATIONAL PSYCHOLOGY, 1933, 24 : 417 - 441
  • [10] Jarvis M., 2004, APJ UNPUB