Balls have the worst best Sobolev inequalities

被引:34
作者
Maggi, F
Villani, C
机构
[1] Univ Duisburg Essen, Fachbereich Math, D-47057 Duisburg, Germany
[2] UMPA, ENS, F-69364 Lyon, France
关键词
isoperimetric inequality; Sobolev inequality; mass transportation; trace;
D O I
10.1007/BF02921860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using transportation techniques in the spirit of Cordero-Erausquin, Nazaret and Villani [7], we establish an optimal non parametric trace Sobolev inequality, for arbitrary locally Lipschitz domains in R-n. We deduce a sharp variant of the Brezis-Lieb trace Sobolev inequality [4], containing both the isoperimetric inequality and the sharp Euclidean Sobolev embedding as particular cases. This inequality is optimal for a ball, and can be improved for any other bounded, Lipschitz, connected domain. We also derive a strengthening of the Brezis-Lieb inequality, suggested and left as an open problem in [4]. Many variants will be investigated in a companion article [10].
引用
收藏
页码:83 / 121
页数:39
相关论文
共 15 条
[1]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[2]  
BRENIER Y, 1987, CR ACAD SCI I-MATH, V305, P805
[4]   SOBOLEV INEQUALITIES WITH REMAINDER TERMS [J].
BREZIS, H ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (01) :73-86
[5]   ON THE MINIMIZATION OF SYMMETRICAL FUNCTIONALS [J].
CARLEN, EA ;
LOSS, M .
REVIEWS IN MATHEMATICAL PHYSICS, 1994, 6 (5A) :1011-1032
[6]   EXTREMALS OF FUNCTIONALS WITH COMPETING SYMMETRIES [J].
CARLEN, EA ;
LOSS, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) :437-456
[7]   A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities [J].
Cordero-Erausquin, D ;
Nazaret, B ;
Villani, C .
ADVANCES IN MATHEMATICS, 2004, 182 (02) :307-332
[8]  
Evans L. C., 2018, Measure Theory and Fine Properties of Functions
[9]  
Lieb E. H., 2001, ANALYSIS-UK, V14
[10]  
MAGGI F, IN PRESS BALLS HAVE