Analysis of a quasicontinuum method in one dimension

被引:41
作者
Ortner, Christoph [1 ]
Suli, Endre [1 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2008年 / 42卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
atomistic material models; quasicontinuum method; error analysis; stability;
D O I
10.1051/m2an:2007057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The quasicontinuum method is a coarse-graining technique for reducing the complexity of atomistic simulations in a static and quasistatic setting. In this paper we aim to give a detailed a priori and a posteriori error analysis for a quasicontinuum method in one dimension. We consider atomistic models with Lennard-Jones type long-range interactions and a QC formulation which incorporates several important aspects of practical QC methods. First, we prove the existence, the local uniqueness and the stability with respect to a discrete W-1,W-infinity-norm of elastic and fractured atomistic solutions. We use a fixed point argument to prove the existence of a quasicontinuum approximation which satisfies a quasi-optimal a priori error bound. We then reverse the role of exact and approximate solution and prove that, if a computed quasicontinuum solution is stable in a sense that we make precise and has a sufficiently small residual, there exists a 'nearby' exact solution which it approximates, and we give an a posteriori error bound. We stress that, despite the fact that we use linearization techniques in the analysis, our results apply to genuinely nonlinear situations.
引用
收藏
页码:57 / 91
页数:35
相关论文
共 25 条
[1]   Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics: the convex case [J].
Blanc, Xavier ;
Le Bris, Claude ;
Legoll, Frederic .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (02) :209-216
[2]   Effective cohesive behavior of layers of interatomic planes [J].
Braides, A ;
Lew, AJ ;
Ortiz, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (02) :151-182
[3]  
Braides A, 2002, MATH MECH SOLIDS, V7, P41, DOI [10.1177/1081286502007001229, 10.1177/108128602024229]
[4]   Variational formulation of softening phenomena in fracture mechanics. The one-dimensional case [J].
Braides, A ;
Dal Maso, G ;
Garroni, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 146 (01) :23-58
[5]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[6]   Analysis of a force-based quasicontinuum approximation [J].
Dobson, Matthew ;
Luskin, Mitchell .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01) :113-139
[7]   Optimal convergence for the finite element method in Campanato spaces [J].
Dolzmann, G .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1397-1427
[8]   Trust region algorithms and timestep selection [J].
Higham, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :194-210
[10]  
Lemaire B., 1989, New Methods in Optimization and Their Industrial Uses, P73