Heat-Treatment Process of S-130 Steel Produced by Selective Laser Melting

被引:2
作者
Gao Piao [1 ]
Lan Xinqiang [1 ]
Zhou Yaxiong [2 ]
Wang Yun [2 ]
Yang Huanqing [2 ]
Wang Zemin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[2] Xian Space Engine Co Ltd, Xian 710100, Shaanxi, Peoples R China
来源
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG | 2022年 / 49卷 / 02期
关键词
laser technique; selective laser melting; S-130 maraging stainless steel; heat treatment; microstructure; mechanical properties; MECHANICAL-PROPERTIES; MICROSTRUCTURE; PROPERTY; CR;
D O I
10.3788/CJL202249.0202003
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Objective The Fe-Cr-Ni-Co-Mo system is a new type of maraging stainless steel (MSS) possessingultra-highstrengthandgoodtoughnesswhichisconsideredasapotentialstructuralmaterialforfabricatinglandinggearpartspowertrainpartsofvehiclesandliquid-oxygenkeroseneenginecomponentsItisdifficulttofabricatethesecomplex-structuredprecisionmetalcomponentsbytraditionalprocessingmethodsegcastingandforgingAsafast-growingadditivemanufacturingtechnologyselectivelasermeltingSLMcanbeusedtofabricatecomplex-structuredandhigh-performancepartswithashortprocessingperiodahighmaterialutilizationrateandlowproductioncostHoweverfewpublicreportsonthefabricationofFe-Cr-Ni-Co-MoMSSsbySLMareavailableBasedonthishereanS-130MSSisproducedbySLMwhosechemicalcompositionsmassfractionsareCr 105%--120%Ni60%--90%Co30%--70%Mo15%--35%andtherestisFeToobtaintheoptimalheat-treatmentregimetheeffectsoffive-stepandthree-stepheat-treatmentsonmicrostructuresandpropertiesarecomparedandanalyzedMethodsThesphericalgasatomizedS-130powderwithanaveragesizeof456 mu misthestartingmaterialTheSLMexperimentiscarriedoutonaself-developedmachineAseriesofS-130cuboidsamplesandtensiletestsamplesaredepositedusingtheoptimizedSLMparameterslaserpowerof360Wscanningspeedof800mmshatchspacingof01mmlayerthicknessof40 mu mandphaseangleof90 degrees Heat-treatmentsareconductedinamufflefurnaceataheatingrateof10 degrees CminTheSLMas-depositedS-130samplesareheat-treatedundertwokindsofheat-treatmentprocesses1homogenization1150 degrees Cx3haircooling+grainrefinement950 degrees Cx1haircooling+solution800 degrees Cx1haircooling+cryogeniccooling-73 degrees Cx2hwarminginair+aging500 degrees Cx3haircoolingfive-stepheattreatment2solution800 degrees Cx1haircooling+cryogeniccooling-73 degrees Cx2hwarminginair+aging500 degrees Cx3haircoolingthree-stepheattreatmentMicrostructureandphasecharacteristicsareobservedandidentifiedbythemeansofX-raydiffractometerXRDscanningelectronmicroscopeSEMandtransmissionelectronmicroscopyTEMMicrohardnessandtensilepropertiesarealsoevaluatedResultsandDiscussionsThephasecompositionsoftheSLMasdepositedS-130samplesconsistofthedominantmartensiteandfewretainedaustenitevolumefractionof612%Thecontentsvolumefractionsofausteniteareincreasedto852%and1131%afterthefive-stepandthree-stepheat-treatmentsrespectivelyFig3whichismainlyascribedtotheformationofrevertedausteniteTheSLMas-depositedS-130samplespresentcellulardendritestructuresFig4TheTEMresultsrevealalargenumberofmartensitelathswithahighdensityofdislocationsFig5AftertwokindsofheattreatmentsthelargequantityofnanosizedspheroidalprecipitatesaregeneratedanduniformlydispersedinthemartensitelathsandthelamellarretainedrevertedaustenitearedistributedamongthemartensitelathsFigs6and7Afterthefive-stepheattreatmentthemartensitewidthis82365 +/- 3005nmandtheprecipitatesizeis1522 +/- 283nmComparativelythemartensitewidthobtainedafterthethree-stepheattreatment56259 +/- 2006nmisfinerandtheprecipitatesize858 +/- 213nmissmallerFig8ThisismainlyduetothelargerresidualstressintheSLMsampleswithouthomogenization+grainrefinementtreatmentwhichprovidesagreaterdrivingforceformartensitictransformationandpromotestheformationoffinerlathmartensiteduringthesolution+cryogeniccoolingMeanwhileitprovidesagreaterdrivingforceforthe alpha-gamma phasetransformationandprecipitationofthesecondphaseparticlesduringthesubsequentagingthusobtainingmorefineprecipitatesTheaveragemicrohardnessyieldstrengthandultimatestrengthoftheSLMas-depositedS-130sampleare35151 +/- 1116HV8526 +/- 4086MPaand107289 +/- 296MParespectivelyAfterthefive-stepheattreatmenttheaveragemicrohardnessyieldstrengthandultimatestrengthincreaseto38308 +/- 1106HV114182 +/- 5609MPaand12337 +/- 956MParespectivelyAfterthethree-stepheattreatmenttheaveragemicrohardnessyieldstrengthandultimatestrengthincreaseto40494 +/- 1032HV123576 +/- 617MPaand126697 +/- 662MParespectivelyTheelongationforthetwokindsofheattreatments1769 +/- 023%and1747 +/- 015%respectivelyiscomparabletothatoftheSLMas-depositedsample1766 +/- 011%Fig10Comparedwiththatafterthefive-stepheattreatmentthesampleafterthree-stepheattreatmentpossesseshighmicrohardnessandtensilestrengthAccordingtotheHall-PetchformulathesmallerthemartensitelaththehighertheresistanceofthemartensitephaseinterfacetodislocationmovementandthehigherthemartensitehardnessandyieldstrengthBesidestheinteractionbetweenthedispersedfinerprecipitatesanddislocation si senhancedtheresistancetodislocationmovementisincreasedandthusthehardnessandyieldstrengtharefurtherimprovedInadditionthesamplehasahighaustenitecontentafterthree-stepheattreatmentwhichensuresahighelongationConclusionsInthispaperanS-130MSSissuccessfullyproducedbySLMForSLMas-depositedsamplesthephaseanalysisrevealsalargeamountofmartensiteandasmallamountofretainedausteniteandthemicrostructureischaracterizedbythecellulardendritestructuresandalargenumberofmartensitelathsAfterthetwokindsofheattreatmentstheformationofrevertedausteniteincreasesthecontentofausteniteandalargenumberofnanosizedprecipitatesareuniformlydispersedinthemartensitelathsMeanwhilethelamellarretainedrevertedausteniteisdistributedamongthemartensitelathsComparedwiththoseoftheSLMas-depositedsamplesthemicrohardnessandtensilestrengtharesignificantlyimprovedandtheelongationisnotreducedaftertwokindsofheattreatmentsMoreoverincomparisontothatafterfive-stepheattreatmentthesampleafterthree-stepheattreatmentpossessesahighcontentofausteniteandslenderermartensitelathsaswellasfinerprecipitatewhichcontributestohigh microhardnessandtensilestrengthundertheconditionofensuringelongation The optimized heat-treatment regime for the SLM as-deposited S-130 MSS is three-step heat treatment (solution+cryogenic cooling+aging)
引用
收藏
页数:11
相关论文
共 28 条
[1]   Microstructure and mechanical properties of stainless steel CX manufactured by Direct Metal Laser Sintering [J].
Asgari, Hamed ;
Mohammadi, Mohsen .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 709 :82-89
[2]   Predictive modeling and experimental results for residual stresses in laser hardening of AISI 4140 steel by a high power diode laser [J].
Bailey, Neil S. ;
Tan, Wenda ;
Shin, Yung C. .
SURFACE & COATINGS TECHNOLOGY, 2009, 203 (14) :2003-2012
[3]   Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts [J].
Chen, Hongyu ;
Gu, Dongdong ;
Dai, Donghua ;
Ma, Chenglong ;
Xia, Mujian .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 682 :279-289
[4]   Microstructure and Micro-hardness of 4Cr5MoSiV1 Die Steels Fabricated by Selective Laser Melting [J].
Chen Shuai ;
Tao Fenghe ;
Jia Changzhi .
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (01)
[5]   Effect of heat treatment on microstructure and mechanical properties of Fe?Cr?Ni?Co?Mo maraging stainless steel produced by selective laser melting [J].
Gao, Piao ;
Jing, Guanyi ;
Lan, Xinqiang ;
Li, Shuhan ;
Zhou, Yaxiong ;
Wang, Yun ;
Yang, Huanqing ;
Wei, Kaiwen ;
Wang, Zemin .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 814
[6]   Tailored microstructure and enhanced comprehensive mechanical properties of selective laser melted Ti-40Al-9V-0.5Y alloy after aging treatment [J].
Gao, Piao ;
Wang, Zemin .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 780
[7]   Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting [J].
Gao, Piao ;
Huang, Wenpu ;
Yang, Huihui ;
Jing, Guanyi ;
Liu, Qi ;
Wang, Guoqing ;
Wang, Zemin ;
Zeng, Xiaoyan .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 39 :144-154
[8]  
[葛鹏 Ge Peng], 2012, [热加工工艺, Hot Working Technology], V41, P227
[9]   Laser Additive Manufacturing of High-Performance Metallic Aerospace Components [J].
Gu Dongdong ;
Zhang Hongmei ;
Chen Hongyu ;
Zhang Han ;
Xi Lixia .
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (05)
[10]  
[姜越 Jiang Yue], 2010, [材料科学与工艺, Material Science and Technology], V18, P571