Immobilization of lipase Eversa Transform 2.0 on poly(urea-urethane) nanoparticles obtained using a biopolyol from enzymatic glycerolysis

被引:18
作者
Bresolin, Daniela [1 ]
Hawerroth, Beatriz [1 ]
Romera, Cristian de Oliveira [1 ]
Sayer, Claudia [1 ]
de Araujo, Pedro Henrique Hermes [1 ]
de Oliveira, Debora [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Chem Engn & Food Engn, POB 476, BR-88040900 Florianopolis, SC, Brazil
关键词
Environmental biotechnology; Enzymatic glycerolysis; Miniemulsion polymerization; Lipase immobilization; Lipase Eversa (R) Transform 2.0; CASTOR-OIL; THERMOMYCES-LANUGINOSUS; CATALYZED GLYCEROLYSIS; POLYURETHANE FOAMS; CRUDE GLYCEROL; FISH-OIL; BIOCATALYSIS; SURFACTANTS; ACTIVATION; BIOECONOMY;
D O I
10.1007/s00449-020-02324-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this work, the free lipase Eversa(R) Transform 2.0 was used as a catalyst for enzymatic glycerolysis reaction in a solvent-free system. The product was evaluated by nuclear magnetic resonance (H-1 NMR) and showed high conversion related to hydroxyl groups. In sequence, the product of the glycerolysis was used as stabilizer and biopolyol for the synthesis of poly(urea-urethane) nanoparticles (PUU NPs) aqueous dispersion by the miniemulsion polymerization technique, without the use of a further surfactant in the system. Reactions resulted in stable dispersions of PUU NPs with an average diameter of 190 nm. After, the formation of the PUU NPs in the presence of concentrated lipase Eversa(R) Transform 2.0 was studied, aiming the lipase immobilization on the NP surface, and a stable enzymatic derivative with diameters around 231 nm was obtained. The hydrolytic enzymatic activity was determined using rho-nitrophenyl palmitate (rho-NPP) and the immobilization was confirmed by morphological analysis using transmission electron microscopy and fluorescence microscopy.
引用
收藏
页码:1279 / 1286
页数:8
相关论文
共 51 条
[1]   Immobilisation and application of lipases in organic media [J].
Adlercreutz, Patrick .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (15) :6406-6436
[2]  
Ahmad R., 2015, Biochem. Anal. Biochem, V4, DOI [10.4172/2161-1009.1000178, DOI 10.4172/2161-1009.1000178]
[3]  
American Standard ASTM D4274-99, 2016, D427499 ASTM
[4]  
Azhar Abdul Halim Khairul, 2015, Applied Mechanics and Materials, V735, P226, DOI 10.4028/www.scientific.net/AMM.735.226
[5]   Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester [J].
Bassi, Jaquelinne J. ;
Todero, Larissa M. ;
Lage, Flavia A. P. ;
Khedy, Gabrielly I. ;
Ducas, Jamile Dell ;
Custodio, Ana Paula ;
Pinto, Marilene A. ;
Mendes, Adriano A. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 92 :900-909
[6]   Monoglyceride and Diglyceride Production Through Lipase-Catalyzed Glycerolysis and Molecular Distillation [J].
Bogalhos, Patricia ;
Fregolente, Lucente ;
Pinto, Glaucia Maria F. ;
Wolf-Maciel, Maria Regina ;
Maciel Filho, Rubens .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 160 (07) :1879-1887
[7]   Poly(urea-urethane) nanoparticles using mono- and diacylglycerol from glycerolysis of castor oil as biopolyol and stabilizer [J].
Bresolin, Daniela ;
Mazurek, Vinicius ;
Valerio, Alexsandra ;
Sayer, Claudia ;
de Araujo, Pedro H. H. ;
de Oliveira, Debora .
EUROPEAN POLYMER JOURNAL, 2018, 108 :529-535
[8]   Synthesis of a green polyurethane foam from a biopolyol obtained by enzymatic glycerolysis and its use for immobilization of lipase NS-40116 [J].
Bresolin, Daniela ;
Estrella, Arthur S. ;
da Silva, Jacqueline R. P. ;
Valerio, Alexsandra ;
Sayer, Claudia ;
de Araujo, Pedro H. H. ;
de Oliveira, Debora .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2019, 42 (02) :213-222
[9]   Polyurethane Foams Based on Biopolyols from Castor Oil and Glycerol [J].
Bresolin, Daniela ;
Valerio, Alexsandra ;
de Oliveira, Debora ;
Lenzi, Marcelo Kaminski ;
Sayer, Claudia ;
Hermes de Araujo, Pedro Henrique .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2018, 26 (06) :2467-2475
[10]   Non-isocyanate route to biobased polyurethanes and polyureas via AB-type self-polycondensation [J].
Calle, Mariola ;
Lligadas, Gerard ;
Ronda, Juan C. ;
Galia, Marina ;
Cadiz, Virginia .
EUROPEAN POLYMER JOURNAL, 2016, 84 :837-848