Sliding mode identification and control for linear uncertain stochastic systems

被引:0
作者
Basin, Michael [1 ]
Ferreira, Alejandra [1 ]
Fridman, Leonid [1 ]
机构
[1] Autonomous Univ Nuevo Leon, Dept Phys & Math Sci, Nuevo Leon, Mexico
来源
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14 | 2006年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the integral sliding mode technique applied to identifying disturbances and robustifying the optimal linear quadratic Gaussian (LQG) controller for linear uncertain stochastic systems, which is compared to the conventional sliding mode approach. The obtained identifier/controller provides a method for estimating uncertainty values and ensures robustness of the system against perturbations throughout the entire response starting from the initial time instant. Numerical simulations illustrating the obtained results are given for the inverted pendulum system.
引用
收藏
页码:1340 / +
页数:2
相关论文
共 15 条
[1]  
Anderson B. D. O., 1971, OPTIMAL CONTROL LINE
[2]  
Astrom K.J.., 1970, INTRO STOCHASTIC CON
[3]   Sliding-mode adaptive observer approach to chaotic synchronization [J].
Azemi, A ;
Yaz, EE .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2000, 122 (04) :758-765
[4]   Integral sliding mode design for robust filtering and control of linear stochastic time-delay systems [J].
Basin, M ;
Rodriguez-Gonzalez, J ;
Fridman, L ;
Acosta, P .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2005, 15 (09) :407-421
[5]  
Basin M, 2003, ASIAN J CONTROL, V5, P557, DOI 10.1111/j.1934-6093.2003.tb00172.x
[6]  
Basin MV, 2002, IEEE DECIS CONTR P, P2594, DOI 10.1109/CDC.2002.1184229
[7]  
Castaños F, 2005, IEEE DECIS CONTR P, P1976
[8]  
Jazwinski A.H., 2007, STOCHASTIC PROCESSES
[9]  
Maciejowski J.M., 1994, MULTIVARIABLE FEEDBA
[10]   Robust integral sliding mode control for uncertain stochastic systems with time-varying delay [J].
Niu, YG ;
Ho, DWC ;
Lam, J .
AUTOMATICA, 2005, 41 (05) :873-880