Generalized covariations, local time and Stratonovich Ito's formula for fractional Brownian motion with Hurst index H ≥ 1/4

被引:0
作者
Gradinaru, M
Russo, F
Vallois, P
机构
[1] Univ Henri Poincare, Int Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Paris 13, Inst Galilee Math, F-93430 Villetaneuse, France
关键词
fractional Brownian motion; fourth variation; Ito's formula; local time;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a locally bounded real function g, we examine the existence of a 4-covariation [g(B-H), BH, BH, BH], where BH is a fractional Brownian motion with a Hurst index H greater than or equal to (1)/(4). We provide two essential applications. First, we relate the 4-covariation to one expression involving the derivative of local time, in the case H = (1)/(4), generalizing an identity of Bouleau-Yor type, well known for the classical Brownian motion. A second application is an Ito formula of Stratonovich type for f (B-H). The main difficulty comes from the fact BH has only a finite 4-variation.
引用
收藏
页码:1772 / 1820
页数:49
相关论文
共 44 条
[1]   Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2 [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 86 (01) :121-139
[2]  
Alòs E, 2001, TAIWAN J MATH, V5, P609
[3]  
[Anonymous], BERNOUILLI
[4]   LOCAL NONDETERMINISM AND LOCAL TIMES OF GAUSSIAN PROCESSES [J].
BERMAN, SM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 23 (01) :69-94
[5]  
Bertoin J., 1986, Stochastics, V18, P155, DOI 10.1080/17442508608833406
[6]  
BOULEAU N, 1981, CR ACAD SCI I-MATH, V292, P491
[7]  
CARMONA P, 2000, CR ACAD SCI I-MATH, V330, P213
[8]  
Cheridito P., 2000, THESIS ETH ZURICH
[9]   Tanaka formula for the fractional Brownian motion [J].
Coutin, L ;
Nualart, D ;
Tudor, CA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (02) :301-315
[10]  
COUTIN L, 2000, CR ACAD SCI I-MATH, V330, P1