Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust

被引:373
|
作者
van den Eede, Nele [1 ]
Dirtu, Alin C. [1 ,2 ]
Neels, Hugo [1 ]
Covaci, Adrian [1 ,3 ]
机构
[1] Univ Antwerp, Toxicol Ctr, B-2610 Antwerp, Belgium
[2] AI I Cuza Univ Iasi, Dept Chem, Iasi 700506, Romania
[3] Univ Antwerp, Lab Ecophysiol Biochem & Toxicol, B-2020 Antwerp, Belgium
关键词
Organophosphorus flame retardants; OPERs; Dust; Human exposure; Flanders; Belgium; SEMIVOLATILE ORGANIC-COMPOUNDS; PLASTICIZERS; WATER; AIR;
D O I
10.1016/j.envint.2010.11.010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new and efficient analytical method was developed and validated for the analysis of organophosphorus flame retardants (OPFRs) in indoor dust samples. This method involves an extraction step by ultrasonication and vortex, followed by extract clean-up with Florisil solid-phase extraction cartridges and analysis of the purified extracts by gas chromatography-mass spectrometry (GC-MS). Method recoveries ranged between 76 and 127%. except for volatile OPFRs, such as triethyl phosphate (TEP) and tri-(n-propyl) phosphate (TnPP), which were partially lost during evaporation steps. The between day precision on spiked dust samples was <14% for individual OPFRs, except for TEP, tri-iso-butyl phosphate (TiBP) and tri (2-butoxyethyl) phosphate (TBEP). Method limit of quantifications (LOQ) ranged between 0.02 mu g/g (TnPP and tris(1-chloro-2-propyl phosphate (TCPP)) and 0.50 mu g/g (TiBP). The method was further applied for the analysis of indoor dust samples taken from Flemish homes and stores. TiBP, TBEP and TCPP were most abundant OPFR with median concentrations of 2.99, 2.03 and 1.38 mu g/g in house dust and of 1.04, 3.61, and 2.94 mu g/g in store dust, respectively. The concentration of all OPFRs was at least 20 to 30 times higher compared to polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). Estimated exposure to OPFRs from dust ingestion ranged for individual OPFRs between <1 and 50 ng/kg body weight for adults and toddlers, respectively. The estimated body burdens were 1000 to 100 times below reference dose (RID) values, except for the scenario with high dust ingestion and high concentrations of TBEP in toddlers, where intake was only 5 times below RID. Exposure of non-working and working adults to OPFRs appeared to be similar, but in specific work environments, exposure to some OPFRs (e.g. TDCPP) was increased by a factor >5. (c) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:454 / 461
页数:8
相关论文
共 50 条
  • [1] A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure
    Chen, Yixiang
    Liu, Qiyuan
    Ma, Jin
    Yang, Shuhui
    Wu, Yihang
    An, Yanfei
    CHEMOSPHERE, 2020, 260
  • [2] Organophosphate Flame Retardants in Indoor Dust from Egypt: Implications for Human Exposure
    Abdallah, Mohamed Abou-Elwafa
    Covaci, Adrian
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (09) : 4782 - 4789
  • [3] Occurrence and human exposure assessment of organophosphate flame retardants in indoor dust from various microenvironments of the Rhine/Main region, Germany
    Zhou, L.
    Hiltscher, M.
    Puettmann, W.
    INDOOR AIR, 2017, 27 (06) : 1113 - 1127
  • [4] Characterization and human exposure assessment of organophosphate flame retardants in indoor dust from several microenvironments of Beijing, China
    Wu, Min
    Yu, Gang
    Cao, Zhiguo
    Wu, Dongkui
    Liu, Kai
    Deng, Shubo
    Huang, Jun
    Wang, Bin
    Wang, Yujue
    CHEMOSPHERE, 2016, 150 : 465 - 471
  • [5] Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China
    Cao, Dandan
    Lv, Kun
    Gao, Wei
    Fu, Jie
    Wu, Jing
    Fu, Jianjie
    Wang, Yawei
    Jiang, Guibin
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 169 : 383 - 391
  • [6] Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment
    Ali, Nadeem
    Dirtu, Alin C.
    Van den Eede, Nele
    Goosey, Emma
    Harrad, Stuart
    Neels, Hugo
    't Mannetje, Andrea
    Coakley, Jonathan
    Douwes, Jeroen
    Covaci, Adrian
    CHEMOSPHERE, 2012, 88 (11) : 1276 - 1282
  • [7] Determination of organophosphate ester flame retardants in indoor dust and their potential health exposure risk
    Trinh Thu Ha
    Nguyen Duc Cuong
    Le Thi Huyen
    Le Truong Giang
    VIETNAM JOURNAL OF CHEMISTRY, 2020, 58 (06) : 723 - 730
  • [8] Organophosphate flame retardants in the indoor and outdoor dust and gas-phase of Alexandria, Egypt
    Khairy, Mohammed A.
    Lohmann, Rainer
    CHEMOSPHERE, 2019, 220 : 275 - 285
  • [9] Occurrence and risk of human exposure to organophosphate flame retardants in indoor air and dust in Hanoi, Vietnam
    Hoang, Minh Tue Thi
    Le, Giang Truong
    Kiwao, Kadokami
    Duong, Hanh Thi
    Nguyen, Trung Quang
    Phan, Thang Quang
    Bui, Minh Quang
    Truong, Dung Anh
    Trinh, Ha Thu
    CHEMOSPHERE, 2023, 328
  • [10] Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure
    He, Chang
    Wang, Xianyu
    Phong Thai
    Baduel, Christine
    Gallen, Christie
    Banks, Andrew
    Bainton, Paul
    English, Karin
    Mueller, Jochen F.
    ENVIRONMENTAL POLLUTION, 2018, 235 : 670 - 679