The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques

被引:32
作者
Merkle, Christian [1 ]
Rohde, Christian [2 ]
机构
[1] Ibert Ludwigs Univ, Abt Angew Math, D-79104 Freiburg, Germany
[2] Univ Stuttgart, Inst Angew Math & Numer Simulat, D-70569 Stuttgart, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2007年 / 41卷 / 06期
关键词
dynamical phase transitions in compressible media; van-der-Waals pressure; kinetic relations; Riemann solver; ghost fluid approach;
D O I
10.1051/m2an:2007048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions sharply, i.e., without artificial smearing in the physically irrelevant elliptic region. Numerical experiments demonstrate the reliability of the method.
引用
收藏
页码:1089 / 1123
页数:35
相关论文
共 41 条
[1]   KINETIC RELATIONS AND THE PROPAGATION OF PHASE BOUNDARIES IN SOLIDS [J].
ABEYARATNE, R ;
KNOWLES, JK .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (02) :119-154
[2]   Discrete equations for physical and numerical compressible multiphase mixtures [J].
Abgrall, R ;
Saurel, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :361-396
[3]   Computations of compressible multifluids [J].
Abgrall, R ;
Karni, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (02) :594-623
[4]  
[Anonymous], 1999, SYSTEMS CONSERVATION
[5]  
[Anonymous], 1993, SHOCK INDUCED TRANSI, DOI DOI 10.1007/978-1-4613-8348-2_
[6]   A level set algorithm for tracking discontinuities in hyperbolic conservation laws II: Systems of equations [J].
Aslam, TD .
JOURNAL OF SCIENTIFIC COMPUTING, 2003, 19 (1-3) :37-62
[7]  
BEDJAOUI N, 2002, P ROY SOC EDINB A, V132, P1
[8]   Stability of multi-dimensional phase transitions in a Van der Waals fluid [J].
Benzoni-Gavage, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (1-2) :243-263
[9]  
Chalons C, 2003, INTERFACE FREE BOUND, V5, P129
[10]  
CHALONS C, 2005, TRANSPORT EQUILIBRIU