Tessellations in three-dimensional hyperbolic space from dynamics and the quaternions

被引:12
作者
Chung, KW
Chan, HSY
Wang, BN
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Acad Sinica, Dept Syst Ecol, Beijing, Peoples R China
关键词
D O I
10.1016/S0960-0779(00)00086-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Automatic generation of coloured patterns in the three-dimensional hyperbolic space is considered from a dynamical system's point of view. Equivariant mappings with the symmetry of the Picard group is constructed. A convergence colour scheme is described, which reveals the convergence rate of various orbits and, at the same time, enhances the artistic appeal of a generated image, This method can be used to create a great variety of exotic symmetrical patterns. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1181 / 1197
页数:17
相关论文
共 7 条
[1]   Symmetric attractors in three-dimensional space [J].
Brisson, GF ;
Gartz, KM ;
McCune, BJ ;
OBrien, KP ;
Reiter, CA .
CHAOS SOLITONS & FRACTALS, 1996, 7 (07) :1033-&
[2]   Hyperbolic symmetries from dynamics [J].
Chung, KW ;
Chang, HSY ;
Wang, BN .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (02) :33-&
[3]   Tessellations with the modular group from dynamics [J].
Chung, KW ;
Chan, HSY ;
Wang, BN .
COMPUTERS & GRAPHICS, 1997, 21 (04) :523-534
[4]   SPHERICAL SYMMETRIES FROM DYNAMICS [J].
CHUNG, KW ;
CHAN, HSY .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (07) :67-81
[5]  
Elstrodt J., 1998, GROUPS ACTING HYPERB, DOI 10.1007/978-3-662-03626-6
[6]  
Escher M. C., 1989, ESCHER ESCHER EXPLOR
[7]  
FIELD M, 1992, SYMMETRY CHAOS