Movable cross-linked elastomer with aligned carbon nanotube/nanofiber as high thermally conductive tough flexible composite

被引:54
作者
Goto, Taku [1 ,2 ]
Ito, Tsuyohito [2 ]
Mayumi, Koichi [2 ]
Maeda, Rina [2 ]
Shimizu, Yoshiki [1 ]
Hatakeyama, Kazuto [1 ]
Ito, Kohzo [2 ]
Hakuta, Yukiya [1 ]
Terashima, Kazuo [1 ,2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, AIST UTokyo Adv Operando Measurement Technol Open, Kashiwa Res Complex,2 5-1-5,Kashiwanoha, Kashiwa, Chiba 2778589, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Dept Adv Mat Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
基金
日本学术振兴会;
关键词
Flexible composites; Carbon nanotubes; Carbon fibers; Thermal properties; Slide-ring material; BORON-NITRIDE; YOUNGS MODULUS; NANOTUBES; RUBBER; FILLER; ALIGNMENT; BEHAVIOR;
D O I
10.1016/j.compscitech.2020.108009
中图分类号
TB33 [复合材料];
学科分类号
摘要
Thermally conductive flexible materials must be mechanically compatible with flexible electronic devices. They must have a low Young's modulus, high tensile strength, and toughness, in addition to a high thermal conductivity. These requirements have motivated researchers to develop composites of flexible rubber combined with a large amount of high thermally conductive carbon fibers/nanotubes. However, such composites become brittle because of the poor affinity between the rubber and carbon fibers/nanotube and local stress concentrations in the polymer matrix around the carbon fibers/nanotubes. Herein, to reduce this brittleness and achieve a high thermal conductivity, composite materials containing a slide-ring (SR) material and plasma-surface modified carbon nanofiber (CNF)/carbon nanotube (CNT) aligned via the application of an electric field are described. The addition of a small amount of plasma-surface-modified CNTs to plasma-surface-modified CNF composites and the electric field alignment of these carbon materials produces a clear synergistic effect, facilitating an increase in the thermal conductivity. Furthermore, although this composite contains 45 wt% CNF and 5 wt% CNT, the toughness and tensile strength are no lower than in the case of raw SR. This composite material has a thermal conductivity similar to that of some metals, a low Young's modulus typical of elastomers, and a high tensile strength.
引用
收藏
页数:7
相关论文
共 42 条
[1]  
Araby S., 2015, J MA MAT DES, V65, P1980
[2]   Implication of multi-walled carbon nanotubes on polymer/graphene composites [J].
Araby, Sherif ;
Saber, Nasser ;
Ma, Xing ;
Kawashima, Nobuyuki ;
Kang, Hailan ;
Shen, Heng ;
Zhang, Liqun ;
Xu, Jian ;
Majewski, Peter ;
Ma, Jun .
MATERIALS & DESIGN, 2015, 65 :690-699
[3]   Designing hybrid materials [J].
Ashby, MF ;
Bréchet, YJM .
ACTA MATERIALIA, 2003, 51 (19) :5801-5821
[4]   Highly Thermally Conductive Yet Flexible Composite of Carbon Fiber, Carbon Nanotube, and Rubber Obtained by Decreasing the Thermal Resistivity at the Interface between Carbon Fiber and Carbon Nanotube [J].
Ata, Seisuke ;
Subramaniam, Chandramouli ;
Nishizawa, Ayumi ;
Yamada, Takeo ;
Hata, Kenji .
ADVANCED ENGINEERING MATERIALS, 2017, 19 (02)
[5]   Measuring fiber alignment in electrospun scaffolds: a user's guide to the 2D fast Fourier transform approach [J].
Ayres, Chantal E. ;
Jha, B. Shekhar ;
Meredith, Hannah ;
Bowman, James R. ;
Bowlin, Gary L. ;
Henderson, Scott C. ;
Simpson, David G. .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2008, 19 (05) :603-621
[6]   Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network [J].
Bin Imran, Abu ;
Esaki, Kenta ;
Gotoh, Hiroaki ;
Seki, Takahiro ;
Ito, Kohzo ;
Sakai, Yasuhiro ;
Takeoka, Yukikazu .
NATURE COMMUNICATIONS, 2014, 5
[7]   Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy [J].
Che, Junjin ;
Wu, Kai ;
Lin, Yunjie ;
Wang, Ke ;
Fu, Qiang .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2017, 99 :32-40
[8]   Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes [J].
Chen, Songchao ;
Feng, Yiyu ;
Qin, Mengmeng ;
Ji, Tengxiao ;
Feng, Wei .
CARBON, 2017, 116 :84-93
[9]   Effects of surface-functionalized multi-walled carbon nanotubes on the properties of poly(dimethyl siloxane) nanocomposites [J].
Chua, T. P. ;
Mariatti, M. ;
Azizan, A. ;
Rashid, A. A. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (04) :671-677
[10]   Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends [J].
Das, A. ;
Stoeckelhuber, K. W. ;
Jurk, R. ;
Saphiannikova, M. ;
Fritzsche, J. ;
Lorenz, H. ;
Klueppel, M. ;
Heinrich, G. .
POLYMER, 2008, 49 (24) :5276-5283