Evolving kernel principal component analysis for fault diagnosis

被引:43
|
作者
Sun, Ruixiang
Tsung, Fugee
Qu, Liangsheng
机构
[1] Hong Kong Univ Sci & Technol, Dept Ind Engn & Logist Management, Kowloon, Peoples R China
[2] Xian Jiaotong Univ, Dept Diagnost & Cybernet, Xian 710049, Peoples R China
关键词
kernel principal component analysis; genetic algorithms; fault diagnosis;
D O I
10.1016/j.cie.2007.06.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Feature extraction is the core of a fault diagnosis system. This paper presents a novel approach, called evolving kernel principal component analysis (EKPCA), to transform the original features to a more effective nonlinear combination in fault classification. EKPCA is based on the integration of kernel principal component analysis (KPCA) and an improved evolutionary optimization algorithm. As a coordinate transformation technique, KPCA is a superset of principal component analysis (PCA), which is utilized to project the original data space to a nonlinear feature space via the appropriate kernel function, and then PCA is performed in the projected feature space. Compared with PCA, KPCA is more flexible in extracting a group of new nonlinear features. However, the efficiency of KPCA in real-world applications depends mainly on the kernel function chosen a priori. It remains an issue of how to select the kernel function from the viewpoint of optimization. This paper addresses this issue using the techniques from evolutionary computation (EC). An improved evolutionary algorithm incorporated with a Gaussian mutation operator that is inspired from evolutionary strategies (ES) and evolutionary programming (EP) can enhance both the global and the local search performances without substantially increasing the computational effort. The application in fault diagnosis to a large-scale rotating machine shows that EKPCA is effective and efficient in discovering the optimal nonlinear features corresponding to real-world operational data. Thus, this method can improve the recognition power of a fault diagnosis system. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:361 / 371
页数:11
相关论文
共 50 条
  • [41] Research on fault detection and principal component analysis for spacecraft feature extraction based on kernel methods
    Fu, Na
    Zhang, Guanghua
    Xia, Keqiang
    Qu, Kun
    Wu, Guan
    Han, Minzhang
    Duan, Junru
    OPEN ASTRONOMY, 2022, 31 (01) : 333 - 339
  • [43] Fault Detection and Diagnosis of Continuous Process Based on Multiblock Principal Component Analysis
    Bie, Libo
    Wang, Xiangdong
    2009 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND TECHNOLOGY, VOL I, PROCEEDINGS, 2009, : 200 - 204
  • [44] Fault Detection and Diagnosis Based on Residual Dissimilarity in Dynamic Principal Component Analysis
    Zhang C.
    Dai X.-N.
    Li Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (01): : 292 - 301
  • [45] Bayesian Fault Diagnosis Using Principal Component Analysis Approach with Continuous Evidence
    Zhu, Wenbing
    Li, Zixuan
    Zhou, Sun
    Ji, Guoli
    INFORMATION TECHNOLOGY AND INTELLIGENT TRANSPORTATION SYSTEMS, VOL 1, 2017, 454 : 273 - 283
  • [46] A Novel Bayesian Framework With Enhanced Principal Component Analysis for Chemical Fault Diagnosis
    Yang, Guang
    Zhao, Yanli
    Gu, Xiaohua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [47] Incipient fault diagnosis based on improved principal component analysis for power transformer
    Yang, Tingfang
    Zhang, Hang
    Huang, Libin
    Zeng, Xiangjun
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2015, 35 (06): : 149 - 153and165
  • [48] Fault detection for turbine engine disk based on an adaptive kernel principal component analysis algorithm
    Chen, Jiusheng
    Zhang, Xiaoyu
    Gao, Yuan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2016, 230 (07) : 651 - 660
  • [49] Nonlinear Multimode Industrial Process Fault Detection Using Modified Kernel Principal Component Analysis
    Deng, Xiaogang
    Zhong, Na
    Wang, Lei
    IEEE ACCESS, 2017, 5 : 23121 - 23132
  • [50] Principal-component analysis of multiscale data for process monitoring and fault diagnosis
    Yoon, S
    MacGregor, JF
    AICHE JOURNAL, 2004, 50 (11) : 2891 - 2903