Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst

被引:56
作者
Cai, Hairui [1 ]
Wang, Bin [1 ]
Xiong, Laifei [1 ]
Bi, Jinglei [1 ]
Hao, Hanjing [1 ]
Yu, Xiaojing [3 ]
Li, Chao [4 ]
Liu, Jiamei [4 ]
Yang, Shengchun [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Key Lab Shaanxi Adv Mat & Mesoscop Phys,Key Lab S, 28 West Xianning Rd, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Shaanxi Collaborat Innovat Ctr Hydrogen Fuel Cell, 28 West Xianning Rd, Xian 710049, Peoples R China
[3] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Peoples R China
[4] Xi An Jiao Tong Univ, Instrument Anal Ctr, 28 West Xianning Rd, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Schottky heterojunction; surface reactions; band bending; Fermi level; photocatalytic hydrogen evolution; GRAPHITIC CARBON NITRIDE; EFFICIENT PHOTOCATALYST; HIGHLY EFFICIENT; WATER; NANOSHEETS;
D O I
10.1007/s12274-021-3615-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The photocatalytic performances are highly dependent on the charge separation and surface reaction kinetics of photocatalysts. Aiming at figuring out the effects of co-catalyst with the lower Fermi level on photocatalytic activity, we tuned the Fermi level of Pt nanoparticles on g-C3N4(GCN) by introducing Co atom. Experimental results show that lowering the Fermi level of co-catalyst does not alter light absorption of GCN due to the invariable structure. Besides, Pt3Co with a lower Fermi level contributes less positive influence on charge separation in GCN due to an opposite effect from the stronger electron-trap ability of Pt3Co and increased band bending in GCN-Pt3Co. The density functional theory (DFT) calculations indicate that GCN-Pt3Co has faster surface reaction kinetics than GCN-Pt, owing to easier dissociation of H2O molecules and faster desorption of H* on Pt3Co. Consequently, GCN-Pt3Co exhibits an excellent H-2 evolution rate with 2.91 mmol center dot g(-1)center dot h(-1), which 2.67 times that of GCN-Pt.
引用
收藏
页码:1128 / 1134
页数:7
相关论文
共 54 条
[1]   PHOTOELECTROCHEMISTRY [J].
BARD, AJ .
SCIENCE, 1980, 207 (4427) :139-144
[2]   Bridging effect of Co heteroatom between g-C3N4 and Pt NPs for enhanced photocatalytic hydrogen evolution [J].
Cai, Hairui ;
Wang, Bin ;
Xiong, Laifei ;
Yang, Guang ;
Yuan, Longyun ;
Bi, Jinglei ;
Yu, Xiaojing ;
Zhang, Xiaojing ;
Yang, Sen ;
Yang, Shengchun .
CHEMICAL ENGINEERING JOURNAL, 2020, 394
[3]   Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution [J].
Cai, Hairui ;
Wang, Bin ;
Xiong, Laifei ;
Bi, Jinglei ;
Yuan, Longyun ;
Yang, Guidong ;
Yang, Shengchun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 256
[4]   Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: a case study of (Co, Ni)Fe2O4 modification [J].
Chen, Jie ;
Zhao, Daming ;
Diao, Zhidan ;
Wang, Miao ;
Shen, Shaohua .
SCIENCE BULLETIN, 2016, 61 (04) :292-301
[5]   Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production [J].
Chen, Jie ;
Shen, Shaohua ;
Wu, Po ;
Guo, Liejin .
GREEN CHEMISTRY, 2015, 17 (01) :509-517
[6]   In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production [J].
Chen, Jie ;
Shen, Shaohua ;
Guo, Penghui ;
Wang, Meng ;
Wu, Po ;
Wang, Xixi ;
Guo, Liejin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 152 :335-341
[7]   Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation [J].
Chen, Jie ;
Shen, Shaohua ;
Guo, Penghui ;
Wu, Po ;
Guo, Liejin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (13) :4605-4612
[8]  
Chen WB, 2020, ANGEW CHEM INT EDIT, V59, P16902, DOI [10.1002/ange.202083961, 10.1002/anie.202006925]
[9]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[10]   g-C3N4-Based Heterostructured Photocatalysts [J].
Fu, Junwei ;
Yu, Jiaguo ;
Jiang, Chuanjia ;
Cheng, Bei .
ADVANCED ENERGY MATERIALS, 2018, 8 (03)