Flexible Pressure Sensors with a Wide Detection Range Based on Self-Assembled Polystyrene Microspheres

被引:25
作者
Chen, Wufan [1 ]
Wang, Bingwei [2 ]
Zhu, Qianbing [3 ]
Yan, Xin [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Best Earth BOE Technol Grp Co Ltd, Beijing 100176, Peoples R China
[3] Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
pressure sensor; carbon nanotube films; polystyrene microsphere; wide detection range; ELECTRONIC SKIN; TRANSISTORS; GRAPHENE; DESIGN; FILM;
D O I
10.3390/s19235194
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Flexible pressure sensors are important components of electronic skin and flexible wearable devices. Most existing piezoresistive flexible pressure sensors have obtained high sensitivities, however, they have relatively small pressure detection ranges. Here, we report flexible pressure sensors with a wide detection range using polydimethylsiloxane (PDMS) as the substrate, carbon nanotube films as the electrode material, and self-assembled polystyrene microsphere film as the microstructure layer. The obtained pressure sensor had a sandwich structure, and had a wide pressure detection range (from 4 kPa to 270 kPa), a sensitivity of 2.49 kPa(-1), and a response time of tens of milliseconds. Two hundred load-unload cycles indicated that the device had good stability. In addition, the sensor was obtained by large-area fabrication with a low power consumption. This pressure sensor is expected to be widely used in applications such as electronic skin and flexible wearable devices.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array [J].
Bae, Geun Yeol ;
Pak, Sang Woo ;
Kim, Daegun ;
Lee, Giwon ;
Kim, Do Hwan ;
Chung, Yoonyoung ;
Cho, Kilwon .
ADVANCED MATERIALS, 2016, 28 (26) :5300-+
[2]   A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring [J].
Boutry, Clementine M. ;
Nguyen, Amanda ;
Lawal, Qudus Omotayo ;
Chortos, Alex ;
Rondeau-Gagne, Simon ;
Bao, Zhenan .
ADVANCED MATERIALS, 2015, 27 (43) :6954-+
[3]   Structural Engineering for High Sensitivity, Ultrathin Pressure Sensors Based on Wrinkled Graphene and Anodic Aluminum Oxide Membrane [J].
Chen, Wenjun ;
Gui, Xuchun ;
Liang, Binghao ;
Yang, Rongliang ;
Zheng, Yongjia ;
Zhao, Chengchun ;
Li, Xinming ;
Zhu, Hai ;
Tang, Zikang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) :24111-24117
[4]   Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures [J].
Chen, Zefeng ;
Wang, Zhao ;
Li, Xinming ;
Lin, Yuxuan ;
Luo, Ningqi ;
Long, Mingzhu ;
Zhao, Ni ;
Xu, Jian-Bin .
ACS NANO, 2017, 11 (05) :4507-4513
[5]  
Chortos A, 2016, NAT MATER, V15, P937, DOI 10.1038/NMAT4671
[6]   Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring [J].
Dagdeviren, Canan ;
Su, Yewang ;
Joe, Pauline ;
Yona, Raissa ;
Liu, Yuhao ;
Kim, Yun-Soung ;
Huang, YongAn ;
Damadoran, Anoop R. ;
Xia, Jing ;
Martin, Lane W. ;
Huang, Yonggang ;
Rogers, John A. .
NATURE COMMUNICATIONS, 2014, 5
[7]   Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films [J].
Fan, Feng-Ru ;
Lin, Long ;
Zhu, Guang ;
Wu, Wenzhuo ;
Zhang, Rui ;
Wang, Zhong Lin .
NANO LETTERS, 2012, 12 (06) :3109-3114
[8]   Low-Cost Graphite on Paper Pressure Sensor for a Robot Gripper with a Trivial Fabrication Process [J].
Fastier-Wooller, Jarred ;
Toan Dinh ;
Van Thanh Dau ;
Hoang-Phuong Phan ;
Yang, Fuwen ;
Dzung Viet Dao .
SENSORS, 2018, 18 (10)
[9]   25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress [J].
Hammock, Mallory L. ;
Chortos, Alex ;
Tee, Benjamin C-K ;
Tok, Jeffrey B-H ;
Bao, Zhenan .
ADVANCED MATERIALS, 2013, 25 (42) :5997-6037
[10]   Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles [J].
Jia, Jin ;
Huang, Guotao ;
Deng, Jianping ;
Pan, Kai .
NANOSCALE, 2019, 11 (10) :4258-4266