GENERALIZED ALTERNATING SIGN MATRICES AND SIGNED PERMUTATION MATRICES

被引:1
作者
Brualdi, Richard A. [1 ]
Kim, Hwa Kyung [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Sangmyung Univ, Dept Math Educ, Seoul 03016, South Korea
基金
新加坡国家研究基金会;
关键词
Permutation matrix; alternating sign matrix; Bruhat order;
D O I
10.4134/JKMS.j200318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue the investigations in [6] extending the Bruhat order on n x n alternating sign matrices to our more general setting. We show that the resulting partially ordered set is a graded lattice with a well-define rank function. Many illustrative examples are given.
引用
收藏
页码:921 / 948
页数:28
相关论文
共 11 条
[1]  
Behrend RE, 2007, ELECTRON J COMB, V14
[2]  
Bjorner A., 2003, GRADUATE TEXTS MATH, V231
[3]  
Bressoud D. M., PROOFS CONFIRMATIONS
[4]   Alternating sign matrices and their Bruhat order [J].
Brualdi, Richard A. ;
Schroeder, Michael W. .
DISCRETE MATHEMATICS, 2017, 340 (08) :1996-2019
[5]   Alternating sign matrices, extensions and related cones [J].
Brualdi, Richard A. ;
Dahl, Geir .
ADVANCES IN APPLIED MATHEMATICS, 2017, 86 :19-49
[6]   A Generalization of Alternating Sign Matrices [J].
Brualdi, Richard A. ;
Kim, Hwa K. .
JOURNAL OF COMBINATORIAL DESIGNS, 2015, 23 (05) :204-215
[7]   Patterns of alternating sign matrices [J].
Brualdi, Richard A. ;
Kiernan, Kathleen P. ;
Meyer, Seth A. ;
Schroeder, Michael W. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) :3967-3990
[8]   Weak order and descents for monotone triangles [J].
Hamaker, Zachary ;
Reiner, Victor .
EUROPEAN JOURNAL OF COMBINATORICS, 2020, 86
[9]  
Lascoux Alain, 1996, Electron. J. Combin., V3
[10]   ALTERNATING SIGN MATRICES AND DESCENDING PLANE PARTITIONS [J].
MILLS, WH ;
ROBBINS, DP ;
RUMSEY, H .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1983, 34 (03) :340-359