New exact wave solutions for Hirota equation

被引:40
作者
Eslami, M. [1 ]
Mirzazadeh, M. A. [2 ]
Neirameh, A. [3 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[2] Univ Guilan, Fac Engn & Technol, Dept Engn Sci, East Of Guilan, Rudsar, Iran
[3] Univ Gonbad E Kavoos, Dept Math, Fac Sci, Gonbad, Iran
来源
PRAMANA-JOURNAL OF PHYSICS | 2015年 / 84卷 / 01期
关键词
Hirota equation; first integral method; NONLINEAR SCHRODINGERS EQUATION;
D O I
10.1007/s12043-014-0837-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we construct the topological or dark solitons of Hirota equation by using the first integral method. This approach provides first integrals in polynomial form with a high accuracy for two-dimensional plane autonomous systems. Exact soliton solution is constructed through the established first integrals. This method is a powerful tool for searching exact travelling solutions of nonlinear partial differential equations (NPDEs) in mathematical physics.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 17 条
[1]   1-soliton solution of the K(m, n) equation with generalized evolution [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (25) :4601-4602
[2]   1-soliton solution of the K (m, n) equation with generalized evolution and time-dependent damping and dispersion [J].
Biswas, Anjan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) :2536-2540
[3]   Optical Solitons with Time-Dependent Dispersion, Nonlinearity and Attenuation in a Kerr-Law Media [J].
Biswas, Anjan .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (01) :256-260
[4]  
Bourbaki N., 1972, Elements of mathematics: Commutative algebra
[5]   A procedure to construct exact solutions of nonlinear evolution equations [J].
Cevikel, Adem Cengiz ;
Bekir, Ahmet ;
Akar, Mutlu ;
San, Sait .
PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (03) :337-344
[6]  
Ding T.R., 1996, Ordinary Differential Equations
[7]   The G′/G method and topological soliton solution of the K(m, n) equation [J].
Ebadi, Ghodrat ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) :2377-2382
[8]   Soliton solutions of the resonant nonlinear Schrodinger's equation in optical fibers with time-dependent coefficients by simplest equation approach [J].
Eslami, M. ;
Mirzazadeh, M. ;
Biswas, Anjan .
JOURNAL OF MODERN OPTICS, 2013, 60 (19) :1627-1636
[9]  
Liu Cheng-shi, ARXIVNLIN0609058
[10]  
Mirzazadeh M, 2014, COMPUT APPL MATH, V33, P831, DOI 10.1007/s40314-013-0098-3