Selective Mechanical Reinforcement of Thermoplastic Polyurethane by Targeted Insertion of Functionalized SWCNTs

被引:46
作者
Khan, Umar [1 ]
Blighe, Fiona M. [1 ]
Coleman, Jonathan N. [1 ]
机构
[1] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
CARBON NANOTUBE COMPOSITES; SHAPE-MEMORY POLYURETHANE; SINGLE-WALLED NANOTUBES; IN-SITU; HARD SEGMENT; THERMAL-CONDUCTIVITY; NANOCOMPOSITES; CRYSTALLIZATION; DEFORMATION; MORPHOLOGY;
D O I
10.1021/jp102938q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have prepared composites from a thermoplastic polyurethane reinforced with functionalized single walled nanotubes. Nanotubes with two types of functional groups were used: water-soluble tubes functionalized with polyethyleneglycol or poly(amino benzene sulfonic acid) and tetrahydrafuran-soluble tubes functionalized with octadecylamine. Composites prepared with water- or tetrahydrafuran-soluble tubes showed markedly different properties. Addition of water-soluble tubes tended to result in crystallization of the polyurethane soft segments, whereas addition of the tetrahydrafuran-soluble tubes promoted crystallization of the polyurethane hard segments. We interpret this as evidence of selective insertion of tubes in either hard or soft segments depending on the surface chemistry of the (functionalized) nanotube and the chemical structure of the segment. This interpretation is supported by differences in the mechanical properties of the composites. The water-based composites tend to be stiffer and display higher plateau stress, consistent with reinforcement of the soft segments. However, the tetrahydrafuran cast composites tend to maintain their strength and ductility at higher nanotube loading levels, whereas the water-based composites become weak and brittle above similar to 10 vol % nanotubes. This is consistent with the water-based nanotubes impeding the extension and motion of the soft segments, resulting in loss of ductility. In contrast, the tetrahydrafuran-soluble nanotubes become segregated in the hard segments and so do not negatively impact on the mechanical properties at high nanotube content. This controlled reinforcement has allowed us to prepare composites with modulus, plateau stress, strength, and ductility of up to 250 MPa, 8 MPa, 60 MPa and 750%, respectively, significantly better than neat polyurethane.
引用
收藏
页码:11401 / 11408
页数:8
相关论文
共 54 条
[1]   High quality dispersions of functionalized single walled nanotubes at high concentration [J].
Amiran, Johnny ;
Nicolosi, Valeria ;
Bergin, Shane D. ;
Khan, Umar ;
Lyons, Philip E. ;
Coleman, Jonathan N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3519-3524
[2]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[3]   Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite [J].
Bhattacharyya, AR ;
Sreekumar, TV ;
Liu, T ;
Kumar, S ;
Ericson, LM ;
Hauge, RH ;
Smalley, RE .
POLYMER, 2003, 44 (08) :2373-2377
[4]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[5]   Towards tough, yet stiff, composites by filling an elastomer with single-walled nanotubes at very high loading levels [J].
Blighe, Fiona M. ;
Blau, Werner J. ;
Coleman, Jonathan N. .
NANOTECHNOLOGY, 2008, 19 (41)
[6]   Surface electrical conductivity in ultrathin single-wall carbon nanotube/polymer nanocomposite films [J].
Bliznyuk, V ;
Singamaneni, S ;
Kattumenu, R ;
Atashbar, M .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[7]   Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites [J].
Buffa, Faian ;
Abraham, Gustavo A. ;
Grady, Brian P. ;
Resasco, Daniel .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2007, 45 (04) :490-501
[8]   Reinforcement of polymers with carbon nanotubes:: The role of nanotube surface area [J].
Cadek, M ;
Coleman, JN ;
Ryan, KP ;
Nicolosi, V ;
Bister, G ;
Fonseca, A ;
Nagy, JB ;
Szostak, K ;
Béguin, F ;
Blau, WJ .
NANO LETTERS, 2004, 4 (02) :353-356
[9]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[10]   Carbon nanotube-reinforced polyurethane composite fibers [J].
Chen, Wei ;
Tao, Xiaoming ;
Liu, Yuyang .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (15) :3029-3034