Urban Terrain Multiple Target Tracking Using Probability Hypothesis Density Particle Filtering

被引:0
|
作者
Zhou, Meng [1 ]
Chakraborty, Bhavana [1 ]
Zhang, Jun Jason [2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85004 USA
[2] Univ Denver, Dept Elect & Comp Engn, Denver, CO USA
来源
2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR) | 2011年
关键词
Multiple target tracking; probability hypothesis density; particle filtering; urban terrain;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multi-model particle probability hypothesis density filer (PPHDF) algorithm for multiple target tracking in urban terrain is investigated in this paper. The multi-model PPHDF is based on target state-space modeling of urban scenarios, random finite set theory, multiple model estimation theory, and sequential Monte Carlo implementations. Our proposed algorithm can instantaneously and efficiently estimate both the number of targets and their corresponding states without conventional measurement-to-track associations. Numerical simulation results demonstrate that the multi-model PPHDF can achieve good tracking performance with tractable computational complexity in the test bench urban tracking scenario with complex multipath radar return patterns.
引用
收藏
页码:331 / 335
页数:5
相关论文
共 50 条
  • [41] Multiple Targets Tracking in Radar System Based on Cross Sector Probability Hypothesis Density Filter
    Xu, Jian
    Sun, Yishen
    Wang, Hanbing
    2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,
  • [42] Multitarget tracking using multiple bistatic range measurements with probability hypothesis densities
    Tobias, M
    Lanterman, AD
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIII, 2004, 5429 : 296 - 305
  • [43] Train Positioning Using Visible Light Communication with Target Tracking and Particle Filtering
    Zhang, Yanpeng
    Wan, Meng
    Zhu, Xiaoqi
    Zhang, Rongrong
    Zhang, Bingqing
    Zhongguo Jiguang/Chinese Journal of Lasers, 2025, 52 (01):
  • [44] Target tracking by particle filtering in binary sensor networks
    Djuric, Petar M.
    Vemula, Mahesh
    Bugallo, Monica F.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (06) : 2229 - 2238
  • [45] Tracking Video Target via Particle Filtering on Manifold
    Ge, Huilin
    Zhu, Zhiyu
    Lou, Kang
    INFORMATION TECHNOLOGY AND CONTROL, 2019, 48 (04): : 538 - 544
  • [46] Probability hypothesis density filter for parameter estimation of multiple hazardous sources
    Daniyan, Abdullahi
    Liu, Cunjia
    Chen, Wen-Hua
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (17):
  • [47] Infrared Target Tracking Based on Improved Particle Filtering
    Hu, Zhiwei
    Su, Yixin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (05)
  • [48] Minimax particle filtering for tracking a highly maneuvering target
    Lim, Jaechan
    Kim, Hun-Seok
    Park, Hyung-Min
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (02) : 636 - 651
  • [49] Multiple target tracking using Janossy measure density functions
    Mori, S
    Chong, CY
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2005, 2005, 5913
  • [50] Joint target tracking and classification with particle filtering and mixture Kalman filtering using kinematic radar information
    Angelova, D
    Mihaylova, L
    DIGITAL SIGNAL PROCESSING, 2006, 16 (02) : 180 - 204