Urban Terrain Multiple Target Tracking Using Probability Hypothesis Density Particle Filtering

被引:0
|
作者
Zhou, Meng [1 ]
Chakraborty, Bhavana [1 ]
Zhang, Jun Jason [2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85004 USA
[2] Univ Denver, Dept Elect & Comp Engn, Denver, CO USA
来源
2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR) | 2011年
关键词
Multiple target tracking; probability hypothesis density; particle filtering; urban terrain;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multi-model particle probability hypothesis density filer (PPHDF) algorithm for multiple target tracking in urban terrain is investigated in this paper. The multi-model PPHDF is based on target state-space modeling of urban scenarios, random finite set theory, multiple model estimation theory, and sequential Monte Carlo implementations. Our proposed algorithm can instantaneously and efficiently estimate both the number of targets and their corresponding states without conventional measurement-to-track associations. Numerical simulation results demonstrate that the multi-model PPHDF can achieve good tracking performance with tractable computational complexity in the test bench urban tracking scenario with complex multipath radar return patterns.
引用
收藏
页码:331 / 335
页数:5
相关论文
共 50 条
  • [31] Cubature Information Gaussian Mixture Probability Hypothesis Density Approach for Multi Extended Target Tracking
    Liu, Zhe
    Ji, Linna
    Yang, Fengbao
    Qu, Xiqiang
    Yang, Zhiliang
    Qin, Dongze
    IEEE ACCESS, 2019, 7 : 103678 - 103692
  • [32] Improved Density Assisted Particle Filtering for Target Tracking in an Asynchronous Wireless Sensor Netwok
    Gong Jigang
    Ji Zhongheng
    Peng Jianhua
    2009 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS, VOL 1, PROCEEDINGS, 2009, : 363 - 366
  • [33] Improved probability hypothesis density filter for multitarget tracking
    Li, Bo
    Pang, Fu-Wen
    NONLINEAR DYNAMICS, 2014, 76 (01) : 367 - 376
  • [34] Improved probability hypothesis density filter for multitarget tracking
    Bo Li
    Fu-Wen Pang
    Nonlinear Dynamics, 2014, 76 : 367 - 376
  • [35] Multi-target state-estimation technique for the particle probability hypothesis density filter
    Lin LiangKui
    Xu Hui
    Sheng WeiDong
    An Wei
    SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (10) : 2318 - 2328
  • [36] Multi-target state-estimation technique for the particle probability hypothesis density filter
    LIN LiangKui 1
    2 95507 Unit
    Science China(Information Sciences), 2012, 55 (10) : 2318 - 2328
  • [37] Multisensor vehicle tracking with the probability hypothesis density filter
    Maehlisch, Mirko
    Schweiger, Roland
    Ritter, Werner
    Dietmayer, Klaus
    2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 632 - 639
  • [38] Multi-target state-estimation technique for the particle probability hypothesis density filter
    LiangKui Lin
    Hui Xu
    WeiDong Sheng
    Wei An
    Science China Information Sciences, 2012, 55 : 2318 - 2328
  • [39] Track-before-detect using Gaussian particle probability hypothesis density
    School of Electronic Engineering, Xidian University, Xi'an
    710071, China
    不详
    735018, China
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 4 (740-745): : 740 - 745
  • [40] Multiple Targets Tracking Based on Cross Sector Probability Hypothesis Density Filter in Radar System
    Jian Xu
    Huang, Fangming
    Sun Yishen
    Huang Zhiliang
    2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,