Facile urea-assisted precursor pre-treatment to fabricate porous g-C3N4 nanosheets for remarkably enhanced visible-light-driven hydrogen evolution

被引:38
作者
Bai, Jirong [1 ]
Yin, Chaochuang [2 ]
Xu, Haiyang [1 ]
Chen, Gang [1 ]
Ni, Zhijiang [1 ]
Wang, Zhilei [1 ]
Li, Yaguang [2 ]
Kang, Shifei [2 ]
Zheng, Zheng [1 ]
Li, Xi [1 ,3 ]
机构
[1] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China
[2] Univ Shanghai Sci & Technol, Dept Environm Sci & Engn, Shanghai 200093, Peoples R China
[3] Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing 314001, Peoples R China
关键词
Urea-assisted; Porous g-C3N4 nanosheets; Precursor pre-treatment; Surface etching; Hydrogen evolution; GRAPHITIC CARBON NITRIDE; PHOTOCATALYTIC H-2 EVOLUTION; ONE-POT SYNTHESIS; DOPED G-C3N4; EFFICIENT PHOTOCATALYST; MESOPOROUS G-C3N4; WATER; DEGRADATION; IRRADIATION; PERFORMANCE;
D O I
10.1016/j.jcis.2018.07.108
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen generation photocatalyzed by low-cost graphite carbon nitride (g-C3N4) is a fascinating and effective route to solve energy crisis, but is mainly limited by the few reactive sites, low carrier separation efficiency and mediocre visible-light utilization. In this work, these limitations were tackled through a facile eco-friendly precursor pretreatment by tuning bulk g-C3N4 into porous structure. This pretreatment restricted agglomeration in the subsequent condensation and created more porous channels for charge carrier transfer and more surface active sites for reaction. The modified g-C3N4 has larger surface area, broader visible-light response, enhanced electron migration capacity and prolonged lifetime of photogenerated carriers. These well-amended g-C3N4 nanosheets possess an average hydrogen evolution rate 5.7 times that of bulk g-C3N4. This work affords a facile, eco-friendly and scalable strategy to design or synthesize other porous materials. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:280 / 286
页数:7
相关论文
共 48 条
[3]   Decoration of carbon dots and AgCl over g-C3N4 nanosheets: Novel photocatalysts with substantially improved activity under visible light [J].
Asadzadeh-Khaneghah, Soheila ;
Habibi-Yangjeh, Aziz ;
Abedi, Marjan .
SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 199 :64-77
[4]   Graphitic carbon nitride nanosheets coupled with carbon dots and BiOI nanoparticles: Boosting visible-light-driven photocatalytic activity [J].
Asadzadeh-Khaneghah, Soheila ;
Habibi-Yangjeh, Aziz ;
Seifzadeh, Davod .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 87 :98-111
[5]   Scalable and clean exfoliation of graphitic carbon nitride in NaClO solution: enriched surface active sites for enhanced photocatalytic H2 evolution [J].
Cui, Lifeng ;
Liu, Yanfei ;
Fang, Xueyou ;
Yin, Chaochuang ;
Li, Shasha ;
Sun, Di ;
Kang, Shifei .
GREEN CHEMISTRY, 2018, 20 (06) :1354-1361
[6]   A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin g-C3N4 nanosheets [J].
Du, Xiaorui ;
Zou, Guojun ;
Wang, Zhonghao ;
Wang, Xiaolai .
NANOSCALE, 2015, 7 (19) :8701-8706
[7]   MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution [J].
Guo, L. ;
Yang, Z. ;
Marcus, K. ;
Li, Z. ;
Luo, B. ;
Zhou, L. ;
Wang, X. ;
Du, Y. ;
Yang, Y. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (01) :106-114
[8]   The sulfur-bubble template-mediated synthesis of uniform porous g-C3N4 with superior photocatalytic performance [J].
He, Fang ;
Chen, Gang ;
Yu, Yaoguang ;
Zhou, Yansong ;
Zheng, Yi ;
Hao, Sue .
CHEMICAL COMMUNICATIONS, 2015, 51 (02) :425-427
[9]   Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis [J].
He, Zuoli ;
Kim, Chuhyung ;
Lin, Lihua ;
Jeon, Tae Hwa ;
Lin, Sen ;
Wang, Xinchen ;
Choi, Wonyong .
NANO ENERGY, 2017, 42 :58-68
[10]   Layered Nanojunctions for Hydrogen-Evolution Catalysis [J].
Hou, Yidong ;
Laursen, Anders B. ;
Zhang, Jinshui ;
Zhang, Guigang ;
Zhu, Yongsheng ;
Wang, Xinchen ;
Dahl, Soren ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (13) :3621-3625