Perovskite materials for highly efficient catalytic CH4 fuel reforming in solid oxide fuel cell

被引:34
作者
Wei, Tong [1 ]
Liu, Bo [2 ]
Jia, Lichao [2 ]
Li, Renhong [1 ]
机构
[1] Zhejiang SCI TECH Univ, Sch Mat Sci Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Ctr Fuel Cell Innovat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cell; CH < sub > 4 <; sub > reforming; Perovskite; Ni-based catalyst; Exsolution; CARBON-DIOXIDE; SYNTHESIS GAS; PARTIAL SUBSTITUTION; LANIO3; PEROVSKITE; LATTICE OXYGEN; METHANE; CO2; NI; SYNGAS; NICKEL;
D O I
10.1016/j.ijhydene.2021.05.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
SOFC (solid oxide fuel cell, SOFC) is recognized to be efficient green energy technology in the 21st century. However, when hydrocarbons are directly used as fuel, carbon deposition is easy to occur in Ni-based anode, thus losing electrochemical catalytic activity. Fuel pre reforming is also called on-cell reforming of hydrocarbons, which has been a promising solution for alleviating the carbon deposition problem in cermet anodes to varying degrees. And the key factor is to find an efficient and stable fuel reforming catalyst. Perovskite oxides have stable structure, highly catalytic activity and adjustable thermal expansion coefficient for using on the cells, showing great potentials of application for fuel reforming. In this paper, we summarize the application of perovskite catalyst in CH4 fuel reforming based on the research of our group and other scholars, and puts forward the corresponding views and perspective, especially in perovskite catalyst with Ni exsolution. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:24441 / 24460
页数:20
相关论文
共 86 条
[1]   A Novel Carbon-Resistant Perovskite Catalyst for Hydrogen Production Using Methane Dry Reforming [J].
Alenazey, Feraih ;
AlOtaibi, Bandar ;
Otaibi, Raja A. L. ;
Alyousef, Yousef ;
Alqahtania, Salma ;
Qazaq, Amjad ;
Zahid, Umer ;
Vo, Dai-Viet N. ;
Adesina, Adesoji .
TOPICS IN CATALYSIS, 2021, 64 (5-6) :348-356
[2]   Energy storage technologies and real life applications - A state of the art review [J].
Aneke, Mathew ;
Wang, Meihong .
APPLIED ENERGY, 2016, 179 :350-377
[3]   Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells [J].
Arrive, Charline ;
Delahaye, Thibaud ;
Joubert, Olivier ;
Gauthier, Gilles .
JOURNAL OF POWER SOURCES, 2013, 223 :341-348
[4]   Pulse study of CO2 reforming of methane over LaNiO3 [J].
Batiot-Dupeyrat, C ;
Valderrama, G ;
Meneses, A ;
Martinez, F ;
Barrault, J ;
Tatibouët, JM .
APPLIED CATALYSIS A-GENERAL, 2003, 248 (1-2) :143-151
[5]   CO2 reforming of methane over LaNiO3 as precursor material [J].
Batiot-Dupeyrat, C ;
Gallego, GAS ;
Mondragon, F ;
Barrault, J ;
Tatibouët, JM .
CATALYSIS TODAY, 2005, 107-08 :474-480
[6]   Barium Substituted Lanthanum Manganite Perovskite for CO2 Reforming of Methane [J].
Bhavani, Annabathini Geetha ;
Kim, Won Yong ;
Lee, Jae Sung .
ACS CATALYSIS, 2013, 3 (07) :1537-1544
[7]  
Bodrov IM, 1965, J Catal, V4, P413
[8]   CO2 reforming of CH4 [J].
Bradford, MCJ ;
Vannice, MA .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (01) :1-42
[9]   Dry reforming of methane to synthesis gas over supported molybdenum carbide catalysts [J].
Brungs, AJ ;
York, APE ;
Claridge, JB ;
Márquez-Alvarez, C ;
Green, MLH .
CATALYSIS LETTERS, 2000, 70 (3-4) :117-122
[10]  
Carrette L, 2000, CHEMPHYSCHEM, V1, P162, DOI 10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO