Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg-Landau equation

被引:45
作者
Mvogo, Alain [1 ,2 ,3 ]
Tambue, Antoine [2 ,4 ,5 ,6 ]
Ben-Bolie, Germain H. [3 ,7 ]
Kofane, Timoleon C. [3 ,8 ]
机构
[1] Univ Yaounde I, Biophys Lab, Dept Phys, POB 812, Yaounde, Cameroon
[2] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Muizenberg, South Africa
[3] Univ Yaounde I, Ctr Excellence Africain Technol Informat & Commun, Yaounde, Cameroon
[4] Univ Stellenbosch, 6-8 Melrose Rd, ZA-7945 Muizenberg, South Africa
[5] Univ Cape Town, Ctr Res Computat & Appl Mech CERECAM, ZA-7701 Rondebosch, South Africa
[6] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
[7] Univ Yaounde I, Dept Phys, Nucl Phys Lab, POB 812, Yaounde, Cameroon
[8] Univ Yaounde I, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2016年 / 39卷
关键词
Localized solutions; Hindmarsh-Rose neural model; Complex fractional Ginzburg-Landau equation; Riesz fractional finite-difference schemes; DYNAMICS;
D O I
10.1016/j.cnsns.2016.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate localized wave solutions in a network of Hindmarsh-Rose neural model taking into account the long-range diffusive couplings. We show by a specific analytical technique that the model equations in the infrared limit (wave number k -> 0) can be governed by the complex fractional Ginzburg-Landau (CFGL) equation. According to the stiffness of the system, we propose both the semi and the linearly implicit Riesz fractional finite-difference schemes to solve efficiently the CFGL equation. The obtained fractional numerical solutions for the nerve impulse reveal localized short impulse properties. We also show the equivalence between the continuous CFGL and the discrete Hindmarsh-Rose models for relatively large network. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:396 / 410
页数:15
相关论文
共 30 条
[1]   Within-Burst Synchrony Changes for Coupled Elliptic Bursters [J].
al Azad, Abul Kalam ;
Ashwin, Peter .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (01) :261-281
[2]  
[Anonymous], 1999, CHEM FAC PUBL
[3]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[4]   Evidence for a novel bursting mechanism in rodent trigeminal neurons [J].
Del Negro, CA ;
Hsiao, CF ;
Chandler, SH ;
Garfinkel, A .
BIOPHYSICAL JOURNAL, 1998, 75 (01) :174-182
[5]   Localized short impulses in a nerve model with self-excitable membrane [J].
Dikande, Alain M. ;
Bartholomew, Ga-Akeku .
PHYSICAL REVIEW E, 2009, 80 (04)
[6]   Stability of the synchronized network of Hindmarsh-Rose neuronal models with nearest and global couplings [J].
Djeundam, S. R. Dtchetgnia ;
Yamapi, R. ;
Filatrella, G. ;
Kofane, T. C. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :545-563
[7]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[8]   A MODEL OF NEURONAL BURSTING USING 3 COUPLED 1ST ORDER DIFFERENTIAL-EQUATIONS [J].
HINDMARSH, JL ;
ROSE, RM .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1984, 221 (1222) :87-102
[9]   Localized nonlinear excitations in diffusive Hindmarsh-Rose neural networks [J].
Kakmeni, F. M. Moukam ;
Inack, E. M. ;
Yamakou, E. M. .
PHYSICAL REVIEW E, 2014, 89 (05)
[10]   Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network [J].
Kilpatrick, Zachary P. ;
Bressloff, Paul C. .
PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (09) :547-560