Deep Learning to Estimate Biological Age From Chest Radiographs

被引:58
作者
Raghu, Vineet K. [1 ,2 ,3 ]
Weiss, Jakob [1 ,2 ,3 ,4 ]
Hoffmann, Udo [1 ,2 ,3 ]
Aerts, Hugo J. W. L. [1 ,2 ,3 ,5 ,6 ]
Lu, Michael T. [1 ,2 ,3 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Cardiovasc Imaging Res Ctr, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Program Artificial Intelligence Med, 75 Francis St, Boston, MA 02115 USA
[4] Univ Hosp Freiburg, Dept Diagnost & Intervent Radiol, Freiburg, Germany
[5] Maastricht Univ, Dept Radiol & Nucl Med, CARIM, Maastricht, Netherlands
[6] Maastricht Univ, Dept Radiol & Nucl Med, GROW, Maastricht, Netherlands
关键词
biological age; cardiovascular risk prediction; chest radiographs; deep learning; LUNG-CANCER MORTALITY; TASK-FORCE; RISK; CLASSIFICATION; PROSTATE;
D O I
10.1016/j.jcmg.2021.01.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVES The goal of this study was to assess whether a deep learning estimate of age from a chest radiograph image (CXR-Age) can predict longevity beyond chronological age. BACKGROUND Chronological age is an imperfect measure of longevity. Biological age, a measure of overall health, may improve personalized care. This paper proposes a new way to estimate biological age using a convolutional neural network that takes as input a CXR image and outputs a chest x-ray age (in years) as a measure of long-term mortality risk. METHODS CXR-Age was developed using CXR from 116,035 individuals and validated in 2 held-out testing sets: 1) 75% of the CXR arm of PLCO (Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial) (N = 40,967); and 2) the CXR arm of NLST (National Lung Screening Trial) (N = 5,414). CXR-Age was compared to chronological age and a multivariable regression model of chronological age, risk factors, and radiograph findings to predict all-cause and cardiovascular mortality with a maximum 23 years and 13 years of follow-up, respectively. The primary outcome was observed mortality; results are provided for the testing datasets only. RESULTS In the PLCO testing dataset, a 5-year increase in CXR-Age carried a higher risk of all-cause mortality than a 5-year increase in chronological age (CXR-Age hazard ratio [HR]: 2.26 [95% confidence interval (CI): 2.24 to 2.29] vs. chronological age HR: 1.77 [95% CI: 1.75 to 1.78]; p < 0.001). A similar pattern was found for cardiovascular mortality (CXR-Age cause-specific HR: 2.45 per 5 years [95% CI: 2.34 to 2.56] vs. chronological age HR: 1.82 per 5 years [95% CI: 1.74 to 1.90]). Similar results were seen for both outcomes in the NLST external testing dataset. Adding CXR-Age to the multivariable model resulted in significant improvements for predicting both outcomes in both testing datasets (p < 0.001 for all comparisons). CONCLUSIONS Based on a CXR image, CXR-Age predicted long-term all-cause and cardiovascular mortality. (J Am Coll Cardiol Img 2021;14:2226-2236 ) (c) 2021 by the American College of Cardiology Foundation.
引用
收藏
页码:2226 / 2236
页数:11
相关论文
共 31 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Vascular compliance as a measure of biological age [J].
Bulpitt, CJ ;
Rajkumar, C ;
Cameron, JD .
JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 1999, 47 (06) :657-663
[3]   PadChest: A large chest x-ray image dataset with multi-label annotated reports [J].
Bustos, Aurelia ;
Pertusa, Antonio ;
Salinas, Jose-Maria ;
de la Iglesia-Vaya, Maria .
MEDICAL IMAGE ANALYSIS, 2020, 66
[4]   Age-Related Left Ventricular Remodeling and Associated Risk for Cardiovascular Outcomes The Multi-Ethnic Study of Atherosclerosis [J].
Cheng, Susan ;
Fernandes, Veronica R. S. ;
Bluemke, David A. ;
McClelland, Robyn L. ;
Kronmal, Richard A. ;
Lima, Joao A. C. .
CIRCULATION-CARDIOVASCULAR IMAGING, 2009, 2 (03) :191-198
[5]  
Christensen Kaare, 2009, BMJ, V339, pb5262
[6]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[7]   A proportional hazards model for the subdistribution of a competing risk [J].
Fine, JP ;
Gray, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (446) :496-509
[8]   Frailty in older adults: Evidence for a phenotype [J].
Fried, LP ;
Tangen, CM ;
Walston, J ;
Newman, AB ;
Hirsch, C ;
Gottdiener, J ;
Seeman, T ;
Tracy, R ;
Kop, WJ ;
Burke, G ;
McBurnie, MA .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2001, 56 (03) :M146-M156
[9]   2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines [J].
Goff, David C., Jr. ;
Lloyd-Jones, Donald M. ;
Bennett, Glen ;
Coady, Sean ;
D'Agostino, Ralph B., Sr. ;
Gibbons, Raymond ;
Greenland, Philip ;
Lackland, Daniel T. ;
Levy, Daniel ;
O'Donnell, Christopher J. ;
Robinson, Jennifer G. ;
Schwartz, J. Sanford ;
Shero, Susan T. ;
Smith, Sidney C., Jr. ;
Sorlie, Paul ;
Stone, Neil J. ;
Wilson, Peter W. F. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 63 (25) :2935-2959
[10]  
Grundy SM, 2001, AM J CARDIOL, V88, p8E