Atmospheric Pressure Non-Thermal Plasma Activation of CO2 in a Packed-Bed Dielectric Barrier Discharge Reactor

被引:65
作者
Mei, Danhua [1 ]
Tu, Xin [1 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
non-thermal plasmas; carbon dioxide conversion; plasma treatment of catalysts; plasma chemistry; supported catalysts; GLIDING ARC PLASMA; CARBON-DIOXIDE; LOW-TEMPERATURES; DECOMPOSITION; CONVERSION; REDUCTION; CATALYSTS; GENERATION; EFFICIENCY; NI;
D O I
10.1002/cphc.201700752
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct conversion of CO2 into CO and O-2 is performed in a packed-bed dielectric barrier discharge (DBD) non-thermal plasma reactor at low temperatures and atmospheric pressure. The maximum CO2 conversion of 22.6% is achieved when BaTiO3 pellets are fully packed into the discharge gap. The introduction of g-Al2O3 or 10 wt% Ni/g-Al2O3 catalyst into the BaTiO3 packed DBD reactor increases both CO2 conversion and energy efficiency of the plasma process. Packing g-Al2O3 or 10 wt% Ni/g-Al2O3 upstream of the BaTiO3 bed shows higher CO2 conversion and energy efficiency compared with that of mid-or downstream packing modes because the reverse reaction of CO2 conversion-the recombination of CO and O to form CO2-is more likely to occur in mid-and downstream modes. Compared with the g-Al2O3 support, the coupling of the DBD with the Ni catalyst shows a higher CO2 conversion, which can be attributed to the presence of Ni active species on the catalyst surface. The argon plasma treatment of the reacted Ni catalyst provides extra evidence to confirm the role of Ni active species in the conversion of CO2.
引用
收藏
页码:3253 / 3259
页数:7
相关论文
共 61 条
[21]   CO2 dissociation using the Versatile atmospheric dielectric barrier discharge experiment (VADER) [J].
Lindon, Michael A. ;
Scime, Earl E. .
FRONTIERS IN PHYSICS, 2014, 2 :1-13
[22]  
Liu CJ, 2006, PURE APPL CHEM, V78, P1227, DOI 10.1351/pac200678061227
[23]   Plasma methods for preparing green catalysts: Current status and perspective [J].
Liu, Changjun ;
Li, Minyue ;
Wang, Jiaqi ;
Zhou, Xintong ;
Guo, Qiuting ;
Yan, Jinmao ;
Li, Yingzhi .
CHINESE JOURNAL OF CATALYSIS, 2016, 37 (03) :340-348
[24]   CO2 Reduction on Transition Metal (Fe, Co, Ni, and Cu) Surfaces: In Comparison with Homogeneous Catalysis [J].
Liu, Cong ;
Cundari, Thomas R. ;
Wilson, Angela K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (09) :5681-5688
[25]   CO2 reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water [J].
Mahammadunnisa, Shaik ;
Reddy, Enakonda Linga ;
Ray, Debjothi ;
Subrahmanyam, Challapalli ;
Whitehead, John Christopher .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 16 :361-363
[26]   Efficient Conversion of CO2 to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts [J].
Medina-Ramos, Jonnathan ;
Pupillo, Rachel C. ;
Keane, Thomas P. ;
DiMeglio, John L. ;
Rosenthal, Joel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (15) :5021-5027
[27]   Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design [J].
Mei, Danhua ;
Tu, Xin .
JOURNAL OF CO2 UTILIZATION, 2017, 19 :68-78
[28]   Plasma-catalytic reforming of biogas over supported Ni catalysts in a dielectric barrier discharge reactor: Effect of catalyst supports [J].
Mei, Danhua ;
Ashford, Bryony ;
He, Ya-Ling ;
Tu, Xin .
PLASMA PROCESSES AND POLYMERS, 2017, 14 (06)
[29]   Optimization of CO2 Conversion in a Cylindrical Dielectric Barrier Discharge Reactor Using Design of Experiments [J].
Mei, Danhua ;
He, Ya-Ling ;
Liu, Shiyun ;
Yan, Joseph ;
Tu, Xin .
PLASMA PROCESSES AND POLYMERS, 2016, 13 (05) :544-556
[30]   Plasma-photocatalytic conversion of CO2 at low temperatures: Understanding the synergistic effect of plasma-catalysis [J].
Mei, Danhua ;
Zhu, Xinbo ;
Wu, Chunfei ;
Ashford, Bryony ;
Williams, Paul T. ;
Tu, Xin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 182 :525-532